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4. Basic principles of statistical mechanics

Problem 4.5 Model for rubber elasticity.
The rubber is assumed to consist of a polymer chain ofN rod-like monomers, each of length

a and is subjected to a forceF in the +X direction. Each monomer can point independently
along any ofX,Y,Z axes, in either the+ or− direction. The energy is onlyX-dependent;ε = aF
for the monomer pointimg along−X, ε = −aF for the monomer pojnting along+X, ε = 0 for
the monomer along±Y and±Z.

(a) Calculate the partition function for theN-monomer chain.

(b) Show that the linear thermal expansivity is negative, asfor the real rubber. Interpret the
result physically.

Solution to Problem 4.5

(a) Each monomer has the partition function

Z1 = 2+2+e−βFa+eβFa = 4+2cosh(βFa)

The first terms are frome0y +e−0y and0z+e−0z : the total partition function being

Z = ZN
1 = 2N[2+cosh(βFa)]N .

(b) If Nξ+ states point on the average to+X, Nξ− states point to−X, etc., then

〈LX〉 = Na(ξ+−ξ−) , 〈LY〉 = Na(η+−η−) , 〈LZ〉 = Na(ζ+−ζ−) ,

We immedately obtain that〈LY〉 = 〈LZ〉 = 0. Furthermore,

ξ± = e±βaF/Z1 , → 〈LX〉 = Na
sinhβaF

2+coshβaF
.

We immediately get∂〈LX〉/∂β > 0. Consequently,∂〈LX〉/∂T < 0. Rubber contracts upon
heating.
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TD Theory of the rods
Consider the rod of lengthl streching in longitudinal direction with forchf . The work done

at stretching of the rod on the lengthdl is

dW = − f dl

.
Let us compare the rod with the ideal gas:

dW = PdV

All formulas formulas used for ideal gas is valud for rod withsubstitution ofP → − f and
V → l . So the generilized force in our problem is− f and generalized coordinate isl . Then

dU(S, l) = TdS= f dl

Maxwell rule will look like
∂(T,S)

∂( f , l)
= −1

In the TD of rod the EoS will bef = f (l ,T) instead ofP = P(V,T) for gases and will have a
linear dependence onT in a range of the small elastic deformations:

l(T,0) = l(T0,0) [1−α(T −T0)]

whereT0 = 273.25Ko, α is the coefficient of linear expansion, defined only experimentally.
Hook’s law tells

l(T,0)− l(T0,0)

l(T,0)
=

1
Eσ

f

whereE is Young module, does not depend onT, σ is the rod aria in the transverse plane. Two
last equations gives

f = Eσ
{

l
l0(1+α(T −T0)

−1

}

wherel0 = l(T0,0)

Let us considerE andσ constants,α(≈ 10−5grad−1 small, then we will obtain the EOS for rod:

f = Eσ
{

l
l0

(1−α(T −T0))−1

}

Let us find entropy of rod:

dS=

(

∂S
∂T

)

l
dT +

(

∂S
∂l

)

T
dl =

Cl

T
dT−

(

∂ f
∂T

)

l
dl

From EOS which gives
(

∂ f
∂T

)

l
= −

αEσl
l0
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dS=
Cl

T
dT +

αEσl
l0

dl

To obtainS we need to knowCl (T, l). There are similaries between ideal gases, real gases
and perfect rods: in all three cases the generalized force (P for gases andf for rods) is linear
function of temperature, it meansCl does not depend onl asCV does not depend onV for gases:

(

∂Cl

∂l

)

T
=

(

∂2 f
∂T2

)

l
= 0

From here for the caseCl = const

S=
Z

Cl (T)

T
dT +

αEσl2

2l0
+const

S= Cl logT +
αEσl2

2l0
+const

The internal energy of ideal rod is

dU = TdS+ f dl = Cl dT +

(

αEσ
l
l0

+ f

)

dl ≈Cl dT +Eσ
l − l0

l0
dl

U = Cl T +
Eσ(l − l0)2

2l0
+const

In contract to ideal gases which energy does not depend on volume, internal energy of ideal
rods is a square of its deformations.

Subproblem on Rubber Elasticity
As a simple model of an elastic string like, e.g., a rubber band, we consider a linear chain of

N building blocks. Each building block can be in two differentstatesa or b. In these states the
building blocks have lengthla, andlb and energiesεa andεb, respectively. The total length of the
chain isL = Nala + Nblb and the total energy of the string by itself isE0 = Naεa + Nbεb where
Na = N−Nb is the number of building blocks in statea. The string is streched by an external
force f which turns the total energy of a state intoE = E0−L f .

a) Calculate the partition function of this string as a function of temperatureT, the number
of building blocksN, and the external forcef . Introduce variablesni ∈ {a,b} that describe in
which state building blocki is and write the partition function as a sum over these variablesni .

Solution a)

Z(T) = ∑
ni

e−β(E0−L f ) = ∑
ni∈{a,b}

· · · ∑
nN∈{a,b}

e−β(∑N
i=1 εni )eβ( f ∑N

i=1 lni )

=

(

∑
n∈{a,b}

e−β(εni + f lni )

)N

=
(

e−βεa+β f la +e−βεb+β f lb
)N

b) Calculate the average internal energyU of this string as a function of temperatureT, the
number of building blocksN, and the external forcef .
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Solution b)

U = −

(

∂ lnZ(T)

∂β

)

= N
(εa− f la)e−βεa+β f la +(εb− f lb)e−βεb+β f lb

e−βεa+β f la +e−βεb+β f lb
(1)

c) Calculate the expected length< L > of this string as a function of temperatureT, the
number of building blocksN, and the external forcef . (Hint: The expected length is a similar
quantity as the expected energy. Find an expression for the expected length through a derivative
similar to the derivative which we use to calculate the average internal energy.) What is the
expected length at zero force in the caseεa = εb ? Why?

Solution c)

< L > = <
N

∑
i=1

lni >=
1
β

(

∂ lnZ(T)

∂ f

)

|β,N =

= N
lae−βεa+β f la + lbe−βεb+β f lb

e−βεa+β f la +e−βεb+β f lb

At εa = εb ad f = 0:

< L >= N
lae−βεa + lbe−βεa

e−βεa +e−βεa
= N

la+ lb
2

If (roughly) half of the building blocks are in statea and half in stateb the entropy is maximal
and it is the most preferable state.

Problem 4.19 Suppose the expressionS=−kB ∑r Pr lnPr is accepted as a definition of the

entropy. Imagine that a systemA1 has probabilityP(1)
r of being in a stater and a systemA2 has

probabilityP(2)
s of being in a states. Then

S1 = −kB∑
r

P(1)
r lnP(1)

r , S2 = −kB∑
s

P(2)
s lnP(2)

s .

Each state of a composite systemA consisting ofA1 andA2 can then be labeled by the pair of
numbers,r,s. Let the probability ofA being found in the stater,s be denoted byPrs, and the
corresponding entropy is−kB ∑r,sPrs lnPrs.

(a) If A1 andA2 are weakly interacting so they are statistically independent, thenPrs = P(1)
r P(2)

s

Show that under such circumstances the entropy is simply additive, i. e. S= S1+S2.

(b) Suppose thatA1 andA2 arenotweakly so thatPrs 6= P(1)
r P(2)

s . One has, of course, the general,

relations∑sPrs = P(1)
r , ∑r Prs = P(2)

s , and∑r,sPrs = 1. Show that

S− (S1+S2) = kB∑
rs

Prs ln
P(1)

r P(2)
s

Prs
.

Moreover, by using the inequality

− lnx≥ 1−x,
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show thatS≤ S1+S2, where the equality holds only ifPrs = P(1)
r P(2)

s for all r ands. This
means that the existence of correlation between the systemsleads to a situation less random
that where the systems are completely independent of each other.

Solution to Problem 4.19 Let us start from the part(b), and the 1st part will be a
limiting case. We have

−(S1 +S2)kB = ∑
r

P(1)
r lnP(1)

r +∑
r

P(2)
s lnP(2)

s

= ∑
r,s

Prs ln(P(1)
r +∑

s,r
Prs lnP(2)

s

= ∑
r,s

Prs ln
(

P(1)
r P(2)

s

)

.

If Prs = P(1)
r P(2)

s thenS= S1 +S2. Now

S− (S1+S2) = kB∑
r,s

Prs ln
P(1)

r P(2)
s

Prs

≤ kB∑
r,s

Prs

[

P(1)
r P(2)

s

Prs
−1

]

= kB∑
r,s

[

P(1)
r P(2)

s −Prs

]

= 0.

Problem 4.20 0.1. Consider a system distributed over its accessible statesr in accordance
with a probability distributionPr , and let its entropy be defined by the relations

S= −kB∑
r

Pr lnPr , ∑
r

Pr = 1.

Compare this distribution with the canonical distribution

P(0)
r =

e−βEr

∑r e−βEr

corresponding to the same mean energy〈E〉, i. e.

∑
r

PrEr = ∑
r

P(0)
r Er = 〈E〉 .

The entropy of the canonical distribution is

S0 = −kB∑
r

P(0)
r lnP(0)

r .
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(a) Show that

S−S0 = kB∑
r

Pr ln
P(0)

r

Pr
.

(b) Using the inequality lnx≤ x−1 show thatS0 ≥ S; the equality sign holds only ifPr = P(0)
r

for all statesr. This shows that, for a specific value of mean energy, the entropy S is a
maximum for the canonical distribution.

Solution to Problem 4.20

Solution 0.2:

(a)

(S−S0)/kB = −∑
r

[

Pr lnPr −P(0)
r lnP(0)

r

]

= −∑
r

[

Pr lnPr −P(0)
r (−βEr − lnN )

]

= − lnN −β〈E〉−∑
r

Pr lnPr

= ∑
r

Pr ln
P(0)

r

Pr
.

(b) We have

∑
r

Pr ln
P(0)

r

Pr
≤ ∑

r
Pr

(

P(0)
r

Pr
−1

)

= ∑
r

[

P(0)
r −Pr

]

= 0.

Problem 4.24 Consider non-interacting particles subjected to a harmonic potential. Cal-
culate the canonical partition function

(a) for a single particle

(b) for two distinguishable particles

(c) for two spinless fermions

(d) for two spin-zero bosons

(e) for two spin-1/2 fermions.

Compare the internal energies and entropies in these various cases. Study the limitT → 0,
T → ∞, andh̄ = 0 and interpret the results physically.

Solution to Problem 4.24 Quantum states for a particle in a harmonic potential are
specified by the quantum numbern and the energies areεn = h̄ω(n+1/2). Thus we have:
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(a)

Z1 = e−βh̄ω/2
∞

∑
n=0

e−βh̄ωn =
e−βh̄ω/2

1−e−βh̄ω =
1

2sinh(βh̄ω/2)

F1 = −β−1 lnZ =
1
β

ln

[

2sinh

(

βh̄ω
2

)]

E1 = −
∂ lnZ

∂β
=

h̄ω
2

coth(βh̄ω/2) =
h̄ω
2

+ h̄ωN(ω) , N(ω) =
1

eβh̄ω −1
,

S1/kB = −
∂F

∂kBT
=

βh̄ω
2

coth

(

βh̄ω
2

)

− ln

[

2sinh

(

βh̄ω
2

)]

Limiting cases

• T → ∞ or β → 0

Z1 ≈ kBT/h̄ω , F1 ≈−kBT ln(kBT/h̄ω) , E1 ≈ kBT , S1/kB ≈ 1+ ln(kBT/h̄ω).

• T → 0 or β → ∞

Z1 ≈ e−βh̄ω/2 , F1 = h̄ω/2, E1 = h̄ω/2, S1 = 0.

(b)

Z2 = Z2
1 = e−βh̄ω(

∞

∑
n=0

e−βh̄ωn)2 =
e−βh̄ω

[

1−e−βh̄ω
]2 =

1

4sinh2(βh̄ω/2)

F2 = −2kBT ln [24sinh(βh̄ω/2)]

E2 = 2h̄ω [1/2+N(ω)]

S2/kB = 2S1/kB .

(c) Consider first two identical classical particles. In the productZ2
1 there are two identical terms

in which one of the particles occupy a statea while the second one occupies the stateb. In
the particles are non-distinguishable then we have to divide the product by 2!= 2 to get

Zcl
2 = Z2

1/2 =
1
2

η
(1−η)2 , η ≡ e−βh̄ω .

Then the configuration in which both particles occupythe same stateget the weight 1/2.
Fermions are not allowed to occupy this state, thus we have toextract this configuration.
In this way we get

ZFD
2 = Zcl

2 −D/2, D = e−βh̄ω
∞

∑
n=0

e−2nβh̄ω =
η

1−η2 .

Thus

ZFD
2 =

η2

(1−η)(1−η2)
.
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(d) In a similar way,

ZBE
2 = Zcl

2 +D/2 =
η

(1−η)(1−η2)
.

There is no difference between classical and quantum statistics at high temperatures when
η ≪ 1.

(d) In the case of spin-1/2 fermions each state is doubly degenerate. Thus the proper partition
function is

(2Z1)
2/2!−2D/2 = 2Z2

1 −D = η
(

1
(1−η)2 −

1
1−η2

)

=
2η2

(1−η)(1−η2)
.

The calculation of all thermodynamic quantities is straightforward.

Problem 4.25 Let fn be the average occupation of then-th single-particle level in an ideal
Fermi gas. Consider the binary scattering process where twofermions in states 1 and 2 get
scattered into states 3 and 4. hen , rate of forward scattering is

f1 f2(1− f3)(1− f4)R

whereas the rate of reverse scattering is

f3 f4(1− f1)(1− f2)R
′

whereR= |M|2 is the square of the matrix elementM of the scattering operator the states 1 and
2 andR= |M∗|2. The principle of detailed balance states that. in equilibrium,

f1 f2(1− f3)(1− f4) = f3 f4(1− f1)(1− f2) .

Show that the Fermi-Dirac distribution is the non-trivial solution of this equation. (This deriva-
tion shows how Pauli exclusion principle leads to the FD distribution).

Solution to Problem 4.25 Since fi =
[

eβ(εi−µ) +1
]−1

we have

1− fi =
eβ(εi−µ)

eβ(εi−µ) +1
= eβ(εi−µ) fi .

Thus,

f1 f2(1− f3)(1− f4) = eβ(ε3+ε4−2µ) f1 f2 f3 f4 , f3 f4(1− f1)(1− f2) = eβ(ε1+ε2−2µ) f1 f2 f3 f4 .

Because of the energy conservation law,

ε1+ ε2 = ε3+ ε4 .
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