Set 3. 13.02.2015. Problems 4.5, 4.19, 4.20, 4.24, 4.25

February 14, 2015



4. Basic principles of statistical mechanics

Problem 4.5 Model for rubber elasticity.

The rubber is assumed to consist of a polymer chaiN ofd-like monomers, each of length
a and is subjected to a forde in the +X direction. Each monomer can point independently
along any ofX,Y, Z axes, in either the- or — direction. The energy is onD{-dependentt = aF
for the monomer pointimg along X, € = —aF for the monomer pojnting along X, € = 0 for
the monomer along-Y and+Z.

(a) Calculate the partition function for tid-monomer chain.

(b) Show that the linear thermal expansivity is negativefoaghe real rubber. Interpret the
result physically.

Solution to Problem 4.5
(a) Each monomer has the partition function
Zy=2+2+e P PFa— 41 2coshpFa)
The first terms are frore” 4 e~ 0y and% + e~ 0z : the total partition function being

Z =2 = 2N[2+ cosHpFa)|N.

(b) If N&, states point on the average+oX, N¢_ states point te-X, etc., then

(Lx) =Na(&, —&-), (Ly)=Nany-n-), (Lz)=Nal(+-(),
We immedately obtain thgty) = (Lz) = 0. Furthermore,

sinhpaF

— gthaF /7 Ly)=Na-——— "
& [z = b %21 costpaF

We immediately ged(Lx) /0B > 0. Consequenthd(Lx) /0T < 0. Rubber contracts upon
heating.



TD Theory of therods
Consider the rod of lengthstreching in longitudinal direction with forch. The work done
at stretching of the rod on the lengtlis

dw = —fdl

Let us compare the rod with the ideal gas:
dW = PdV

All formulas formulas used for ideal gas is valud for rod wahbstitution of® — —f and
V — 1. So the generilized force in our problem+s and generalized coordinatelisThen

dU(S1) =TdS= fdl

Maxwell rule will look like
o(T.9
a(f,l)
In the TD of rod the EoS will b = f(I,T) instead ofP = P(V, T) for gases and will have a
linear dependence ohin a range of the small elastic deformations:

=1

[(T,0) =1(Tp,0) [L—a(T —Top)]

whereTy = 27325K°, a is the coefficient of linear expansion, defined only experitaly.

Hook's law tells
I(T,0)—1(To,0) 1

1(T,0) " Eo
whereE is Young module, does not depend ®no is the rod aria in the transverse plane. Two
last equations gives

f—E
0{bﬂ+a

Let us consideE ando constantsg(~ 10~°grad™1 small, then we will obtain the EOS for rod:

T—To) 1} wherelg = |(To,0)

f= Eo{l—(l—(x(T—To))—l}

lo
Let us find entropy of rod:

_ [0S 0S G of
ds— (ﬁ)l dT+ (a)le St (ﬁ)l dl
From EOS which gives
ﬁ B _O(Eol
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Eol
ds= 2T+ 952
T lo

To obtainSwe need to knov (T,l). There are similaries between ideal gases, real gases
and perfect rods: in all three cases the generalized fd?der(gases and for rods) is linear

function of temperature, it meas does not depend drasC, does not depend o for gases:

0\ _ (¥ g
a ); \oaT%),
From here for the cagg = const

2
S:/C'(T)dT-l—O(EOI + const
T AR

dl

aEaol?

S=ClogT + 2l

4+ const

The internal energy of ideal rod is

dU =TdS+ fdl =CGdT + (anII—-l- f) dl szT-i—Eoll_—lodI
0 0

EO'(| — |o)2
2lp

In contract to ideal gases which energy does not depend amglinternal energy of ideal
rods is a square of its deformations.

Subproblem on Rubber Elasticity

As a simple model of an elastic string like, e.g., a rubberdhare consider a linear chain of
N building blocks. Each building block can be in two differestdtesa or b. In these states the
building blocks have length, andl, and energies, andey, respectively. The total length of the
chain isL = Nala + Nplp and the total energy of the string by itselflis = Na€a + Npep Where
Na = N — Ny is the number of building blocks in state The string is streched by an external
force f which turns the total energy of a state if#c= Eg— L f.

a) Calculate the partition function of this string as a funotaf temperaturd’, the number
of building blocksN, and the external forcé. Introduce variables; € {a,b} that describe in
which state building blockis and write the partition function as a sum over these véesat.

Solution a)

Z(T) = Ze*B(EO*Lf): ; ; e*B(Zil\lzleni)eB(fZi'\lzllni)
N nie{ab} nye{ab}

N
_ ( ; e—B(Sni+f|ni)> — (e—BSa+Bf|a+e_Bsb+Bflb)N
ne{a,b}

b) Calculate the average internal enelgyof this string as a function of temperatufe the
number of building block&\, and the external forcé.

U=CT+ + const
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Solution b)

U o 0|n Z(T) . N (sa— fla)e_B8a+Bf|a+ <€b_ flb)e_B€b+Bf|b 1
RN A e PeatBlla | g BeotBrlp (1)

c) Calculate the expected lengthL > of this string as a function of temperatufe the
number of building block$N, and the external forcé. (Hint: The expected length is a similar
guantity as the expected energy. Find an expression fordbected length through a derivative
similar to the derivative which we use to calculate the agermternal energy.) What is the
expected length at zero force in the cage- g, ? Why?

Solution ¢)

N 1/9InZ(T)
<L> = <;Ini>:[—3< 57 )|BvN:

|ae—BSa+Bf|a + |be—BEb+Bf|b
e—B€a+Bf|a + e—B€b+Bf|b

Ateg=¢padf =0:
N P 1 PR [
<L>=N e N >
If (roughly) half of the building blocks are in staéeand half in staté the entropy is maximal
and it is the most preferable state.

Problem 4.19 Suppose the expressi&= —kg 3, P InP; is accepted as a definition of the
entropy. Imagine that a systeM has probabilityPr(l) of being in a state and a systend, has
probabilityPs(z) of being in a stats. Then

S=-keYRYINPRY, S =—kgT PP INP?.
r S

Each state of a composite systéntonsisting ofA; and A, can then be labeled by the pair of
numbersy,s. Let the probability ofA being found in the states be denoted by, and the
corresponding entropy iskg ¥ s PrsInPrs.

(a) If Az andA, are weakly interacting so they are statistically independdenPs = Pr(l) Ps(z)

Show that under such circumstances the entropy is simplyiaeld. e. S=$ + $.

(b) Suppose thad; andA; arenotweakly so thabs # Pr(l) Péz) . One has, of course, the general,
relationsy sPrs = Pr(l), SiPs= PS(Z), andznS Ps = 1. Show that

pr(l) ps(z)
S—-(S+S) = kBZPrsm P

rs rs

Moreover, by using the inequality

—Inx>1-x,
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show thatS< §; + S, where the equality holds only B,s = Pr(l) Ps(z) for all r ands. This
means that the existence of correlation between the systaisto a situation less random
that where the systems are completely independent of eaeh ot

Solution to Problem 4.19 Let us start from the parb), and the 1st part will be a
limiting case. We have

~&+2ks = YAYINRY+ T PP InR?
r r
= YRV + Y Psinp?
S 5T

= Y Psin(RYVR?).

1S

If Ps = PYP2? thenS= S, +S,. Now
INEAPNE)

r S

5-(S+S) = ke ¥ Pshn

S rs

PUR? 1]

S kB ; PI'S [ Prs

= ke Y[RV —ps| 0.
35S

Problem 4.200.1. Consider a system distributed over its accessible statesccordance
with a probability distributiorP,, and let its entropy be defined by the relations

S=—-kg) RInR, P=1.
Z r r Z r
Compare this distribution with the canonical distribution

e_ BEI’

) _
> e P&

P
corresponding to the same mean engjfgy, i. e.
Y PRE=YRYE =(E).
r r
The entropy of the canonical distribution is

r



(@) Show that
Pr(O)
S—SH=Kks Z Prin—

(b) Using the inequality Im < x— 1 show thats > S, the equality sign holds only #, = Pr(o)

for all statesr. This shows that, for a specific value of mean energy, theopptb is a
maximum for the canonical distribution.

Solution to Problem 4.20

Solution 0.2
(@)
(S-S)/ke = -3 [RINR- (O)InPr(O)}
= ~Y[RInP—RY(-pE - In0)|
= —In£7\[—[3<E>—ZPrInPr
(0)
= ZPrInPr?r.
(b) We have

p© RO o 1
ZPrIn—<ZPr L Z[Pr —P,}_o.
r

Problem 4.24 Consider non-interacting particles subjected to a harmpatential. Cal-
culate the canonical partition function

(a) for asingle particle

(b) for two distinguishable particles
(c) for two spinless fermions

(d) for two spin-zero bosons

(e) for two spin-1/2 fermions.

Compare the internal energies and entropies in these wdases. Study the limif — O,
T — o, andh = 0 and interpret the results physically.

Solution to Problem 4.24 Quantum states for a particle in a harmonic potential are
specified by the quantum numbeand the energies agg = hw(n+ 1/2). Thus we have:
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(@)

(b)

] e_BﬁQ)n: efBﬁ(A)/Z _ - 1
1-ePw  2sinhBhw/2)

FL o= —B—lmzzim {Zsinh<@)}

Zl — e— Bﬁw/Z

M

B 2
£ — _"('BLBZ _ ﬁ%ocotr‘(ﬁﬁw/z) — ﬁ%"+ﬁwN(w), N(w) = ﬁ’
Si/ks — _ai.% _ @coth(@) I [Zsinh(%o)}

Limiting cases

e T —>cworf—0

Z1 ~ kT /hw, Fi1~—kgTIn(kgT/hw), Ej~ksT, S /ks=~1+In(ksT/hw).
e T—00rf—oo

Zy~e P2 F —Ry/2, Ep=hw/2, §=0.

Z; = Z%:e—Bﬁw(ie—Bﬁwny: e ! 5= T L
= [1—ePw]®  4sinif(Bhw/2)
F, = —2kgTIn[24siniBhw/2)]
E; = 2hw[l/2+ N(w)]
S/ke = 25/ks.

(c) Consider first two identical classical particles. In theq:uotzf there are two identical terms

in which one of the particles occupy a statevhile the second one occupies the statén
the particles are non-distinguishable then we have to ditheé product by 2+ 2 to get

1 n _
Z8=72/2=2_——" = g Pho,
Then the configuration in which both particles occupg same statget the weight 1/2.
Fermions are not allowed to occupy this state, thus we haeatract this configuration.
In this way we get
B © o 2nBi n

Thus




(d) In a similar way,
n

(1-n)(1-n?)"
There is no difference between classical and quantum titatat high temperatures when
n<1i.

Z5F=78'+D/2=

(d) Inthe case of spin-1/2 fermions each state is doubly degémeilhus the proper partition
function is

2
(220)"/21=2D/2=22;~D=n ((1—1r1)2 B 1—1n2> - (1—n2)r(]1—n2>'

The calculation of all thermodynamic quantities is straigtward.

Problem 4.25 Let f, be the average occupation of thh single-particle level in an ideal
Fermi gas. Consider the binary scattering process whereféwnions in states 1 and 2 get
scattered into states 3 and 4. hen, rate of forward scaftesin

fifa(1—f3)(1- f4)R
whereas the rate of reverse scattering is
fafa(1—f1)(1- )R

whereR = |M|? is the square of the matrix elemevitof the scattering operator the states 1 and
2 andR = |M*|2. The principle of detailed balance states that. in equilig

f1fo(1— f3)(1— f4) = fafa(l— f1)(1— f2).

Show that the Fermi-Dirac distribution is the non-trivialgtion of this equation. (This deriva-
tion shows how Pauli exclusion principle leads to the FDrifigtion).

Solution to Problem 4.25 Sincef, = [eﬁ@i*“) n 1] e have

eBlEi—p) .
— PE-WF,

1-hi=Sew

Thus,
f1 fz(l— f3)(1— f4) = eB(€3+€4*2“) fifofafs, f3 f4(1— fl)(l— fz) = eB(£1+£272p) f1fofsfs.
Because of the energy conservation law,

€1+€=¢€3+¢4.



