# -*- coding: utf-8 -*- from pylab import * from scipy.sparse import spdiags, dia_matrix, coo_matrix from scipy.sparse.linalg import spsolve from scipy.ndimage import measurements # # Written by Marin Soreng # ( C ) 2004 # # Calculates the effective flow conductance Ceff of the # lattice A as well as the pressure P in every site . def FIND_COND (A , X , Y ): P_in = 1. P_out = 0. # Calls MK_EQSYSTEM . B,C = MK_EQSYSTEM (A , X , Y ) #print "B" #print B.todense() #print "C" #print C # Kirchhoff กฏ s equations solve for P P = spsolve(B, C) # The pressure at the external sites is added # ( Boundary conditions ) P = concatenate((P_in * ones (X), P, P_out * ones (X))) # Calculate Ceff Ceff = (P[-1-2*X+1:-1-X] - P_out).T * A[-1-2*X+1:-1-X, 1] / ( P_in - P_out ) #print "P" #print P #print "Ceff" #print Ceff return P , Ceff # # Written by Marin S r e n g # ( C ) 2004 # # Sets up Kirchoff กฏ s equations for the 2 D lattice A . # A has X * Y rows and 2 columns . The rows indicate the site , # the first column the bond perpendicular to the flow direction # and the second column the bond parallel to the flow direction . # # The return values are [B , C ] where B * x = C . This is solved # for the site pressure by x = B \ C . def MK_EQSYSTEM (A , X , Y ): # Total no of internal lattice sites sites = X *( Y - 2) #print "sites:", sites # Allocate space for the nonzero upper diagonals main_diag = zeros(sites) upper_diag1 = zeros(sites - 1) upper_diag2 = zeros(sites - X) # Calculates the nonzero upper diagonals #print A main_diag = A[X:X*(Y-1), 0] + A[X:X*(Y-1), 1] + A[0:X*(Y-2), 1] + A[X-1:X*(Y-1)-1, 0] upper_diag1 = A [X:X*(Y-1)-1, 0] upper_diag2 = A [X:X*(Y-2), 1] main_diag[where(main_diag == 0)] = 1 # Constructing B which is symmetric , lower = upper diagonals . B = dia_matrix ((sites , sites)) # B *u = t B = - spdiags ( upper_diag1 , -1 , sites , sites ) B = B + - spdiags ( upper_diag2 ,-X , sites , sites ) B = B + B.T + spdiags ( main_diag , 0 , sites , sites ) # Constructing C C = zeros(sites) # C = dia_matrix ( (sites , 1) ) C[0:X] = A[0:X, 1] C[-1-X+1:-1] = 0*A [-1 -2*X + 1:-1-X, 1] return B , C def sitetobond ( z ): # # Function to convert the site network z (L , L ) into a ( L *L ,2) bond # network # g [i,0] gives bond perpendicular to direction of flow # g [i,1] gives bond parallel to direction of flow # z [ nx , ny ] -> g [ nx * ny , 2] # nx = size (z ,1 - 1) ny = size (z ,2 - 1) N = nx * ny # g = zeros (N ,2) gg_r = zeros ((nx , ny)) # First , find these gg_d = zeros ((nx , ny )) # First , find these gg_r [:, 0:ny - 1] = z [:, 0:ny - 1] * z [:, 1:ny] gg_r [: , ny - 1] = z [: , ny - 1] gg_d [0:nx - 1, :] = z [0:nx - 1, :] * z [1:nx, :] gg_d [nx - 1, :] = 0 #print "gg_r" #print gg_r #print "gg_d" #print gg_d # Then , concatenate gg onto g g = zeros ((nx *ny ,2)) g [:, 0] = gg_d.reshape(-1,order='F').T g [:, 1] = gg_r.reshape(-1,order='F').T return g def coltomat (z, x, y): # Convert z ( x * y ) into a matrix of z (x , y ) # Transform this onto a nx x ny lattice g = zeros ((x , y)) #print "For" for iy in range(1,y): i = (iy - 1) * x + 1 ii = i + x - 1 #print iy, i, ii g[: , iy - 1] = z[ i - 1 : ii] return g if __name__ == "__main__": # First , find the backbone # Generate spanning cluster (l - r spanning ) lx = 100 ly = 100 p = 0.59 ncount = 0 perc = [] while (len(perc)==0): ncount = ncount + 1 if (ncount >100): #print "Couldn't make percolation cluster..." break z=rand(lx,ly)
0)] print "Percolation attempt", ncount #print "z=" #print z*1 labelList = arange(num + 1) clusterareas = measurements.sum(z, lw, index=labelList) areaImg = clusterareas[lw] maxarea = clusterareas.max() zz = asarray((lw == perc[0])) # zz now contains the spanning cluster # Transpose zzz = zz.T # # Generate bond lattice from this g = sitetobond ( zzz ) # figure() # imshow(g[:,0].reshape(lx,ly), interpolation='nearest') # figure() # imshow(g[:,1].reshape(lx,ly), interpolation='nearest') # figure() # imshow(zzz, interpolation='nearest') # # Generate conductivity matrix p, c_eff = FIND_COND (g, lx, ly) # # Transform this onto a nx x ny lattice x = coltomat ( p , lx , ly ) P = x * zzz g1 = g[:,0] g2 = g[: ,1] z1 = coltomat( g1 , lx , ly ) z2 = coltomat( g2 , lx , ly ) # # Plotting figure() ax = subplot(221) imshow(zzz, interpolation='nearest') title("Spanning cluster") grid(color="white") # subplot (2 ,2 ,1) , imagesc ( zzz ) # title ( " Spanning cluster ") # axis equal subplot(222, sharex=ax, sharey=ax) imshow(P, interpolation='nearest') title("Pressure") colorbar() grid(color="white") # subplot (2 ,2 ,2) , imagesc ( P ) # title ( " Pressure " ) # axis equal # Calculate flux from top to down (remember that flux is the negative of the pressure difference) f2 = zeros ( (lx , ly )) for iy in range(ly -1): f2[: , iy ] = ( P [: , iy ] - P [: , iy +1]) * z2 [: , iy ] # Calculate flux from left to right (remember that flux is the negative of the pressure difference) f1 = zeros ( (lx , ly )) for ix in range(lx-1): f1[ ix ,:] = ( P [ ix ,:] - P [ ix +1 ,:]) * z1 [ ix ,:] # # # Find the sum of absolute fluxes in and out of each site fn = zeros (( lx , ly )) fn = fn + abs ( f1 ) fn = fn + abs ( f2 ) # Add for each column, except the leftmost one, the up-down flux, but offset fn [: ,1: ly ] = fn [: ,1: ly ] + abs ( f2 [: ,0: ly -1]) # For the left-most one, add the inverse pressure multiplied with the spanning cluster bool information fn [: ,0] = fn [: ,0] + abs (( P [: ,0] - 1.0)*( zzz [: ,0])) # For each row except the topmost one, add the left-right flux, but offset fn [1: lx ,:] = fn [1: lx ,:] + abs ( f1 [0: lx -1 ,:]) subplot(223, sharex=ax, sharey=ax) imshow(fn, interpolation='nearest') title ( " Flux " ) colorbar() grid(color="white") #print "fn" #print fn # subplot (2 ,2 ,3) , imagesc ( fn ) zfn = fn > fn.max() - 1e-6 zbb = ( zzz + 2* zfn ) zbb = zbb / zbb.max() subplot(224, sharex=ax, sharey=ax) imshow(zbb, interpolation='nearest') # subplot (2 ,2 ,4) , imagesc ( zbb ) title ( " BB and DE ") grid(color="white") show()