
Binary search trees in ML

Mandatory problem no 3 in INF3110/4110

To be delivered before noon 15th November 2004

In this problem we want to work with binary search trees containing words (i.e., strings).
The search trees are defined as

datatype bintree = NOLEAF |
LEAF of string |
NODE of (string*bintree*bintree);

The NOLEAF constructor is used when a NODE has only one child, as in this little tree with
only two words:

NODE("bravo",
LEAF("alpha"),
NOLEAF)

Functions

You shall write the following functions that operate on bintrees:

n_in_tree(t) that computes how many words are stored in the binary search tree t.

is_in_tree(k,t) returns true if the word k can be found in the tree t.

max_in_tree(t) finds the “biggest” word (i.e., the last in alphabetical order based on the
standard SML-operator <) in t.

add_to_tree(k,t) returns a new tree consisting of an old tree t with k added to it, unless
the word already is in the tree. (In other words, there are no duplicates in the tree.)

create_tree(wl) builds a binary search tree from the words in the string list wl. Any
duplicates should only occur once.

flatten_tree(t) is the inverse operation: it will create a string list of the words in the
tree t in infix (i.e., sorted) order.

fold_tree(f,t) will use the function f to fold the elements of t in infix (i.e., sorted) order.
Use left-to-right folding. For example, when using the test data mentioned below,

fold_tree((fn (s,t) => s ^ t),
Trees_tree);

will produce

val it =
"aagainstallandarearmsasatbosombreastbutbycandayearth’sflowingfoolsgodh#"
: string

which is the concatenation of all the words. (The “#” at the end of the line indicates
that only the initial part of the string is shown.)

1



Test data

On the file ~inf3110/oblig-3/testdata.sml can be found the following test data:

val Trees =
["i", "think", "that", "i", "shall", "never", "see",
"a", "poem", "lovely", "as", "a", "tree",
"a", "tree", "whose", "hungry", "mouth", "is", "prest",
"against", "the", "earth’s", "sweet", "flowing", "breast",
"a", "tree", "that", "looks", "at", "god", "all", "day",
"and", "lifts", "her", "leafy", "arms", "to", "pray",
"a", "tree", "that", "may", "in", "summer", "wear",
"a", "nest", "of", "robins", "in", "her", "hair",
"upon", "whose", "bosom", "snow", "has", "lain",
"who", "intimately", "lives", "with", "rain",
"poems", "are", "made", "by", "fools", "like", "me",
"but", "only", "god", "can", "make", "a", "tree."];

val Trees_tree = create_tree Trees;

n_in_tree(Trees_tree);
is_in_tree("tree", Trees_tree);
is_in_tree("trees", Trees_tree);
max_in_tree(Trees_tree);

fold_tree((fn (s,t) => s ^ ", " ^ t), Trees_tree);

Delivery

Your answer should be sent to your tutor by e-mail and contain

1. the SML program with enough comments to make it easily readable and

2. a printout of a run on the test data mentioned above.

2


