
INF312 mandatory exercise

Igor V. Rafienko (igorr@ifi.uio.no)

Motivation and general information

The midterm project in INF312 is aimed at improving your understand-
ing of concepts covered in the lectures. Specifically, the exercise concen-
trates on heterogenous systems and it emphasizes the relative merits of
the relational and object-oriented approaches to database design. This
paper gives a short introduction into the structure of the relational and
object-oriented databases used in the exercise.

The basis for this project is a movie database, presented in both rela-
tional and object-oriented fashion. The task presented to you consists of
modelling a database, running some queries (using SQL and either C++
or Java) and writing a small report explaining the results obtained.

The data in question are a fragment of the Internet Movie Database
(imdb, [1]). IMDB has a lot of information on approximately 300000
movies and 800000 people. Ifi does not have a sufficiently powerful
database server to run such a large database. In INF312, we will use a far
smaller fragment – about eight percent of the original size. The fragment
contains all movies with a connection to France. Both relational and
object-oriented databases contain the same data, but they are naturally
structured in different ways.

The relational database runs on the Sybase ASE 11.9.2 server gand.
The database is rather small by industrial standards. It contains 11
tables, occupying around 50 MB for both data and indices. The largest
table has around 230000 rows.

The object-oriented database runs on the ObjectStore 6 sp8 server
mjollnir. The database size is around 100 MB for both data and indices.
There is no concept directly corresponding to a table in ObjectStore, but
there are two data structures representing the movies and the people,
containing around 15000 and 80000 entries respectively.

At the time of this writing it is yet uncertain whether we will migrate
from the Sybase server to an Oracle server. However, at least for the Java
interface, the database backend has no bearing on the complexity of the
tasks involved.

This exercise is due on October the 30th.

1

Film
(filmId)

Title
(text)

Year
(int)

production year
surnam

e

m
iddle nam

e

first nam
e

Name
(text)

Person
(personId)

Rating
(1..10)

Votes
(int)

Gender
(’M’, ’F’)

ParticipationRange
(’cast’, ’producer’, ...)

ParticipationValue
(text)

Country
(name)

Language
(name)

Genre
(drama, sci.fi, ...)FilmGenre

FilmLanguage

main title

alternative title

FilmRating

Participation

FilmCountry

Figure 1: NIAM diagram for the relation database

Relational design

The database is centered around three entity types – films, people and
participation, linking the first two together. You can see the NIAM dia-
gram in figure 1.

Each concept in a NIAM model translates into its own table during the
realization stage. Naturally, not all concepts always warrant a table, and
in this particular case Country, Language, Rating, Votes, Year, Title,
Name and Gender have been suppressed. You can see the resulting tables
in figure 21.

The tables Participation and ParticipationValue merit a more
in-depth description. These tables represent the connections between
the films and the people. These connections are categorized (ParticipationRange
contains the list of categories), and Participation registers the nature
of a person’s participation in a movie.

For instance, these rows describe Luc Besson’s participation in ”The
Fifth Element”:

[7] gand.inf212db: select * from Participation
[7] gand.inf212db: where personId = 26513 and filmId = 76914 ;
pid personId partName filmId
------------- ------------- ---------------- -------------

2278671 26513 director 76914
2749250 26513 writing credits 76914

1Notice that grep is not a part of an SQL dialect, but refers to the standard UNIX
command grep. sqsh ([2]) provides a number of useful features such as the traditional
unix shell pipe mechanism

2

[1] gand.inf212db: sp_help
[1] gand.inf212db: go | grep -E ’user table’
AlternativeFilmTitle dbo user table
Film dbo user table
FilmCountry dbo user table
FilmGenre dbo user table
FilmLanguage dbo user table
FilmRating dbo user table
Genre dbo user table
Participation dbo user table
ParticipationRange dbo user table
ParticipationValue dbo user table
Person dbo user table

Figure 2: Tables of the relational database

pid is an artificially created attribute, to facilitate joins between Par-
ticipation and ParticipationValue (This attribute is superfluous,
since <personId, partName, filmId> constitutes a candidate key. But
it is easier to join on one attribute rather than three, and we duplicate
less information in this fashion).

ParticipationValue contains the values describing a participation.
Most commonly these values are roles played by actors in a movie (i.e. a
role name for a given participation of type ”cast”):

[4] gand.inf212db: select * from ParticipationValue
[4] gand.inf212db: where pid = 1846849 ;
pid value
------------- ----------------------

1846849 Leeloo
(1 row affected)

. . . shows the role played by Milla Jovovich in ”The Fifth Element”2.
You are advised to experiment a little with different tables to get a

feeling of how different attributes and tables relate to each other. Run a
set of simple queries to examine the entries for any movies that you are
familiar with.

Examples

Let us study an example showing all the roles played by Milla Jovovich
with the corresponding movies. We will need to perform join operations
between Person (to find Milla Jovovich’s personId), Participation (to
find her roles) and ParticipationValue (to find the name of the roles):

2The pid 1846849 is obtained by joining Person and Participation tables.

3

[2] gand.inf212db: select pv.value, f.mainTitle
[2] gand.inf212db: from ParticipationValue pv, Participation pa,
[2] gand.inf212db: Person p, Film f
[2] gand.inf212db: where p.surName = ’Jovovich’ and
[2] gand.inf212db: p.firstName = ’Milla’ and
[2] gand.inf212db: pa.personId = p.personId and
[2] gand.inf212db: pa.filmId = f.filmId and
[2] gand.inf212db: pa.pid = pv.pid and
[2] gand.inf212db: go -m pretty
+=====================+===+
| value | mainTitle |
+=====================+===+
| Mildred Harris | Chaplin |
+---------------------+---+
| Lucia | Claim, The |
+---------------------+---+
| Leeloo | Fifth Element, The |
+---------------------+---+
| Joan of Arc | Messenger: The Story of Joan of Arc, The |
+---------------------+---+
(4 rows affected)

Note that it is not the case that every entry in Participation has a
corresponding entry in ParticipationValue. Some participations have
no values linked to them, whereas some have more than one (for in-
stance, if a person is both a director and an actor in the same movie). In
that respect it might be better to use an outer join between Participa-
tion and ParticipationValue, although in this example the join type
does not make any difference.

Object-oriented design

The main concepts in the object-oriented database remain the same as in
the relational database. However, since it is possible (and advantageous)
to represent relationships between objects via pointers, there is no direct
representation of the Participation concept. You can see the UML
diagram in figure 3.

The most interesting part of the object-oriented design is the rep-
resenation of the relational Participation table. Ideally, one would
use ODMG’s inverse relations with a suitable container to link Person
instances to Film instances (or, indeed, other Person instances). Unfor-
tunately, ObjectStore’s Java interface (OSJI) does not offer this possibil-
ity, and it is the programmer’s responsibility to uphold the referential
integrity constraints. The relations attribute in Person and Film (see
figure 4 on page 7) represents all the participation information available
for each instance. This information is categorized (as in the relational

4

Person
+personId: Long
 name: Name
 relations: OSHashMap
 gender: char
+equals(:Object): boolean
+hashCode(): int
+init(:ResultSet): void
+registerRelation(:Film,relation_type:String,relation_value:String): void
+getGender(): String
+toString(): String

Name
 first_name: String
 middle_name: String
 last_name: String

Film
+filmId: Long
 mainTitle: Title
 countries: OSVector
 titles: OSVector
 languages: OSVector
 genres: OSVector
 rating: Rating
 relations: OSHashMap
+equals(:Object): boolean
+hashCode(): int
+registerRelation(:Person,relation_type:String,relation_value:String): void
+showAll(:PrintStream): void

Person::relations and Film::relations
are inverses of each other. (OSJI
does not allow inverse relationships)

Title
 name: String
 year: int

Rating
 votes: int[]

Rating::votes[i] contains
the number of votes for
grade i (1 <= i <= 10)relationship

relations inverse Film::relations

relations inverse Person::relations

0..* titles

mainTitle rating

Figure 3: UML diagram for the object-oriented database

5

database), the hashmap keys being the categories. Since a participation
can potentially be a pair (object,value), each category is represented as a
collection of such pairs. ObjectStore offers several possibilities for such
a collection. OSSmallMap is a reasonable choice, for it is designed for few
entries and allows duplicate keys. Each (object,value) pair represents a
connection from the holder of this pair to ”object” with value ”pair”.

Also, notice that productionYear attribute does not appear in the
UML diagram. This attribute has been embedded into mainTitle; i.e.
productionYear for a Film instance is in fact mainTitle.year of that
instance.

Figure 4 shows a snapshot of the data structure in memory. Notice
how Person and Film instances are linked together.

Practical considerations

The relational database used in this exercise is Sybase and the object-
oriented database is ObjectStore. Sybase comes with a C interface, and
one can download a JDBC driver (jConnect) to access the database from
Java. jConnect has already been installed at

/local/sybase11/jConnect-5 5/

and made available to you.
ObjectStore’s main language is C++, but it comes with a Java inter-

face – OSJI. The database can be accessed from either language, but you
cannot rely on C++ specific features, for some of them do not exist in
OSJI, which was used to implement the database.

In all cases only the Java interfaces have been tested. You are free
to try the C and/or C++ interfaces at your own risk, but you will not get
any technical assistance from the lecturers and the TAs.

This section provides practical hints on how to interface with these
two systems.

Connecting to Sybase

The relational database runs on the Sybase server gand (default port
4100). The database’s name is inf212db. To access this database (either
programmatically or from an SQL shell) you need a Sybase user name
and a Sybase password. Ifi’s Sybase administrator distributes these at
the beginning of the semester.

Sybase ships a JDBC driver, jConnect, that one can use to fetch data
from the database. We have this driver installed and you need to adjust
the CLASSPATH variable in order to use it. Basically, you need to do

6

<
O

S
V

ec
to

r>

"F
ra

nc
e"

"U
S

A
"

"S
pa

in
"

"U
K

"

<
O

S
V

ec
to

r>

"E
ng

lis
h"

<
O

S
V

ec
to

r>

"A
dv

en
tu

re
"

"D
ra

m
a"

19
92

"1
49

2:
 L

a
co

nq
uê

te
 d

u
pa

ra
di

s"

T
itl

e

19
92

T
itl

e

"1
49

2:
 C

hr
is

to
ph

e
C

ol
om

b"

...
<

O
S

V
ec

to
r>

"<
ca

st
>

"
"<

m
us

ic
>

"

<
O

S
H

as
hM

ap
>

co
un

tr
ie

s
la

ng
ua

ge
s

ge
nr

es
tit

le
s

re
la

tio
ns

m
ai

nT
itl

e

ra
tin

g

F
ilm

 (
66

2)
R

at
in

g

19
92

T
itl

e

"1
49

2:
 C

on
qu

es
t o

f P
ar

ad
is

e"

N
am

e

"G
ér

ar
d"

"D
ep

ar
di

eu
"

"<
ca

st
>

"
"<

m
us

ic
>

"

<
O

S
H

as
hM

ap
>

<

>
<

>

<

>
<

>

<
O

S
S

m
al

lM
ap

>

P
er

so
n

(7
82

95
)

na
m

e

re
la

tio
ns

<

>
<

>

<

>
<

>

<
O

S
S

m
al

lM
ap

>

...
<

O
S

T
re

eS
et

>
 (

db
 r

oo
t)

...
<

O
S

T
re

eS
et

>
 (

db
 r

oo
t)

"C
hr

is
to

ph
er

 C
ol

um
bu

s"

Figure 4: Runtime datastructures. This example shows Depardieu’s role
in ”Conquest of Paradise”

7

three things to gain access to a database from your program via the Java
database framework:

1. Load the JDBC driver

2. Register it with the JDBC DriverManager

3. Open a connection to a database

Loading and registering is more or less the same for all JDBC drivers,
but opening a connection requires among other things a ”magic” string,
describing the driver and some additional parameters. The jConnect
manual describes exactly what this ”magic” should be. This manual also
contains several examples that you should study. Alternatively you can
consult references such as [4].

If you are not familiar with the JDBC API, you are advised to take a
look at some books describing the Java interface to relational databases
such as [4]. Java API documentation and jConnect manuals provide a lot
of useful information as well (see the resources section on page 12).

Connecting to ObjectStore

The object-oriented database runs on the ObjectStore server mjollnir
(default port). ObjectStore has a number of ways to address a database,
and in this case, we would use the ”host:path” scheme. The database’s
location is:

mjollnir:/ifi/mjollnir/kurs/inf312/sybase.odb

You will also need root names to access the data structures (Do not
worry if ”root name” does not mean anything to you. The ObjectStore
documentation covers this and many other topics in great detail). There
are two roots in this database – one for Person instances and one for
Film instances. They are "people root" and "movie root" respect-
ively. The containers where the objects are stored are of OSTreeSet
type. There is an index (IndexMap in OS terminology) for each OS-
TreeSet. Indices are created on Person.personId and Film.filmId
respectively.

After running queries against the existing databases you will be asked
to design and create your own database. You are free to chose any data
structure you find suitable. You will be given a directory on the database
server where you should (for performance reasons) place your database:

mjollnir:/ifi/mjollnir/kurs/$USER/whatever

8

client

server

database

cache manager cache manager
client

client client

cache manager

Figure 5: ObjectStore architecture

You can create indices for your own data structure (and you are ad-
vised to do so), subject to ordinary ObjectStore restrictions.

Connecting to ObjectStore is not difficult, and the exact procedure is
described in the ObjectStore manuals. In order to use the OSJI, you have
to set certain environment variables and adjust the CLASSPATH variable.

Each client connected to ObjectStore runs a cache manager (see figure
5). The cache manager needs some temporary scratch files, and there are
two environment variables (see below) that control where these files are
created. Notice that the directory where these files reside must exist
prior to files’ creation. The client manager should start automatically,
once you attempt connecting to ObjectStore. Also, there is only one
cache manager per host, regardless of how many clients run on that
particular machine.

The basic procedure to access an ObjectStore database can be divided
into the following steps

1. Initialization code

2. Open the database

3. Start a transaction

4. Fetch an ObjectStore root from the database

5. Access the relevant items

6. Commit the transaction

You should consult the ObjectStore manuals and study some examples
for the details, but this list should provide a general procedure.

You will be given the Java source code for the object-oriented data-
base. You are free to add auxiliary methods to the class definitions, but

9

you should not add or remove any of the attributes (otherwise the seri-
alized objects in the database will not match the Java code available to
the virtual machine).

To summarize, you might find the following setup useful for all
INF312-related applications:

run312TNG()
{

export OBLIGDIR="."
required by objectstore
export OSJI_DIR=/local/ostore6/$HOSTTYPE/osji;
export OS_ROOTDIR=/local/ostore6/$HOSTTYPE/ostore;
unfortunately required by objectstore
export LD_LIBRARY_PATH="$OSJI_DIR/lib:$OS_ROOTDIR/lib:$LD_LIBRARY_PATH"
OSJI stuff
export CLASSPATH="$CLASSPATH:$OBLIGDIR:$OSJI_DIR/osji.jar:\

$OSJI_DIR/tools.jar:$OSJI_DIR/browser.jar:\
$OSJI_DIR:/local/java/jdk1.2"

Certain OS applications need that
export PATH="$OS_ROOTDIR/bin:$OSJI_DIR/bin:${PATH}"
Cache manager.
export OS_CACHE_DIR="/tmp"
export OS_COMMSEG_DIR="/tmp"
Disables IPv6 on Solaris 8 for ObjectStore
export NETPATH="tcp:udp:rawip:ticlts:ticotsord:ticots"

OS6sp8 will NOT work with green threads
export THREADS_FLAG=native

jConnect (Sybase JDBC driver)
export JDBC_HOME="/local/sybase11/jConnect-5_5"
export CLASSPATH="$JDBC_HOME/classes/jconn2.jar:$CLASSPATH"

we use jdk1.2 (or is it enough to set JDK to "1.2"?)
alias java="/local/java/jdk1.2/bin/java"
alias javac="/local/java/jdk1.2/bin/javac"

}

FAQ

This section presents a list of potential problems that you might face
and possible solutions:

• You should not really need it, but the default heap size on a JDK 1.2
JVM is limited to 64MB. Should you require any more heap space,
use ’-Xmxsize’ option (see man java(1) for details). Such an option

10

was necessary when the entire relational database was converted
to ObjectStore. If you need this option in part 2 of the exercise,
you are probably storing too much information in your objects.

• Remember that you have to render the classes that you intend to
store in the ObjectStore database persistent. Failure to do so will
probably trigger a really strange exception when you try to access
the database.

• Remember to set up the environment for working with Object-
Store/Sybase (CLASSPATH, LD LIBRARY PATH, etc.)

• Solaris 8 comes with IPv6 support; an interface which ObjectStore
does not support. As documented in OS FAQ, setting the environ-
ment variable NETPATH to a certain value resolves this problem (c.f.
the setup suggestion in the previous section).

• It is extremely important to implement your own versions of equals
and hashCode in connection with ObjectStore containers.

The default versions (inherited from Object) will not work prop-
erly and you risk not finding the objects that are already there.

Person and Film classes supplied for the first part of the exercise
have already properly defined methods; but for the second part of
the exercise, you’ll have to write your own versions. Remember the
constraints dictated by the Java language specification that apply
to these methods.

• You have probably noticed that Java’s Long data type was used for
various id fields. The reason for this seamingly silly decision is
the inability of OSJI to provide indices for the built-in types. The
documentation clearly points out that an index can be built over
an Object subclass only. Since longs are not related to Object in
any fashion, we had to use Long (which is a subclass of Object).

Incidentally, this problem demonstrates yet again how utterly broken
Java’s type system really is.

• Although the data set in this exercise is very small by industrial
standards, things still take time. Partly because of the old hard-
ware, partly because of the deficient optimizers in Sybase and Ob-
jectStore, partly because the available Java implementation has a
high overhead. If you want to experiment with your datastructures
or queries, try building a smaller test data structure or create a
view spanning fewer rows (You can create a view in Sybase that
queries a table residing in another database).

11

The OO queries in this exercise take time on the minute scale.
Given a slow client machine (e.g. SPARC Ultra 1), it could take
around six minutes to complete query 3 in task 1 (it does not have
to be this slow, but this should give you an approximate figure).

The Sybase server is a bit slow too, but queries 1 and 2 take an
insignificant amount of time; query 3 takes an order of a couple of
seconds.

• Remember that recompiles of the persistent java classes require
”persistifying” (i.e., post-processing with osjcfp) of all relevant class-
files.

• Despite the fact that OS’ indices are at the very best clumsy, they
are still useful, as soon as there are a couple of thousand elements.
When you build your own data structure, remember that any kind
of data loading that requires random access to elements would
benefit from an appropriate index on these elements.

• Sybase ASE 11.9.2 supports outer joins. Look it up in the T-SQL
reference volume 1 and/or T-SQL User’s guide. You might need
this to retrieve the information on participations.

• Apparently OSJI works best with Java JDK 1.2. It definitely does
not support 1.4 or 1.3 specific features, but you might get away
with using JDK 1.3/1.4 without such features. At Ifi you can set the
environment variable JDK to ”1.2” to get the desired JDK version.

• OSJI requires native threads. Since JDK 1.2 on Solaris uses green
threads by default, you have to set the THREADS FLAG variable to
the appropriate value (c.f. the setup suggestion).

Resources

As mentioned earlier, the relational database is running on a Sybase ASE
11.9.2 host gand. Since you have to interact with this database, it might
be wise to look at Transact-SQL, Sybase’s SQL dialect. There are several
manuals pertinent to this installation available at /local/doc/sybase/.
The most interesting volumes are the ones describing T-SQL – Reference
Volume 1 and 2. For the love of God, do not print out the manuals at
Ifi’s printers, since each volume contains hundreds of pages.

Unfortunately Sybase is shipped with an incredibly awkward shell,
isql. It is a fine tool for running scripts, but it is utterly useless for any
kind of interactive work. If you want to fiddle a bit with any database,
try sqsh (pronounced skwish, [2]).

12

Sybase’s jConnect has a Programmer’s Reference, that explains how
to use this driver. To get started, look through chapter 2 of this ref-
erence. The information presented there should be sufficient for the
exercise’s purpose. The documentation is available at

/local/sybase11/jConnect-5 5/docs-45 55/

You might also want to take a look at the documentation shipped
with ObjectStore. It has among other things a tutorial, an API user’s
guide, an API reference guide and a FAQ. Everything is located at /loc-
al/ostore6/$HOSTTYPE.

The chapters 1 and 2 of the Java API user’s guide contain some basic
information that you should familiriaze yourself with in order to be able
to use ObjectStore. You should browse through the rest of the manual
to get a feeling of the features available to you. Nevertheless, do not
spend to much time studying the manual before starting to write an
application, but look things up as needed.

The most interesting part of the API reference is the description of
various containers available to you. Different containers implement dif-
ferent interfaces and you should think about what suits your needs best.
Browse through chapter 7 of the user’s guide to make the proper choice.

Once you have a grasp of the basic building blocks, take a look at the
examples (available at /local/ostore6/$HOSTTYPE/osji/com/odi/). This
should give you an idea as how to proceed with storing and accessing
your data.

There is also an interactive ”shell” (a point-and-drool interface, in
fact) supplementing the OSJI. It can be started with java com.odi.browser.Browser
and it can give you some ideas as to how the entire structure is linked
together. You could also run simple queries through this interface. You
might find it easier to navigate this structure during the development
stage, rather than write a lot of print statements.

The author of this document is available for technical questions by
mail (<URL:mailto:igorr@ifi.uio.no>) or in person. I will not grade
this exercise, nor am I responsible for the exact list of requirements, but
I can offer some assistance, should you have any inquiries.

Source code

You will be given the database ”schemas” for the object-oriented and
relational databases. Also, those of you who want to run their own server
at home can download the SQL table definitions and indices. The data
can be extracted from Sybase by using the bcp command.

13

You can add or remove methods from the classes you will be given,
but you cannot add or remove data members (ObjectStore would prob-
ably die with an obscure message, since the data stored would not match
the classes available to the JVM). As the bare minimum, you would have
to copy the relevant java-files to a suitable directory and modify them to
fit your solution for this mandatory exercise. The two most interesting
files would be Person.java and Film.java.

All the relevant information is located at

URL:http://www.ifi.uio.no/inf312/oblig/

A word of warning – the person who wrote all the Java templates
does not have a firm grasp of the Java language3. If you find some code
that does not look like anything a Java programmer would do, you would
probably be right in your criticism. Sorry about that.

Acknowledgements

I thank David Ranvig (davidra) for helping with the conversion of the
IMDB datafiles into SQL insert statements. Unfortunately IMDB does not
exactly strive to present their data in a format readily available for ma-
chine processing and David helped a lot with some serious data munging
code.

I also thank Rune Aske (rune), who helped me test the IMDB ”mirror”
on his personal computer (mogwai.ifi.uio.no).

3actually, I think that Java is somewhere between Tcl and VB on the silliness scale,
but that’s a different story.

14

References

[1] The Internet Movie Database, http://www.imdb.com/

[2] SQSH – SQL Shell for UNIX, http://www.sqsh.org/

[3] Kildekoden til inf212db, http://www.stud.ifi.uio.no/%7eigorr/inf212db/

[4] ”Java Enterprise in a nutshell”, David Flanagan, Jim Farley, William
Crawford and Kris Magnusson, ISBN 1-56592-483-5E, O’Reilly 1999

15

