
Accenture Technology Consulting

Large databases and performance

Lecture UiO 29. oct. 2015

Audun Faaberg - Accenture

2Copyright © 2015 Accenture All Rights Reserved.

Agenda

1. Introduction.

2. Tune the SW (reduce the IO)

a. Indices

b. Efficient SQL

c. Efficient code & design

3. SOA, object orientation, distance

4. New directions

5. Performance engineering

6. Performance evaluation techniques

7. Real life examples

3

About me
• Senior manager in Accenture Technology Consulting, leading the Performance

engineering group in Norway & the Nordics.

• Worked in Arthur Andersen / Andersen Consulting / Accenture since 1989.

• Specialise in technical project management in large multi platform environments.

• Key words are data base technology, performance, go-live, and problem management

• DB2, Oracle, MSSQL, Sybase, Unix, Linux, z/OS, Cobol, C, Java, Tuxedo, MQ, CICS,
WebLogic, WebSphere, MIIS ++

• audun.faberg@accenture.com

Copyright © 2013 Accenture All Rights Reserved.

4

About Accenture

• 358.000 employees, worldwide (31. Aug 2015).

• Offices in 200 cities / 56 countries.

• Largest country: India.

• 1200 employees, Norway.

• Offices in Oslo, Bergen, Stavanger.

• In the Nordics – Helsinki, Stockholm, Gothenburg,
Copenhagen, + nearshore centre in Riga.

Copyright © 2013 Accenture All Rights Reserved.

5

Disclaimer :-)

• I have worked in Norway, Denmark, France, Italy,

Brazil, The Czech Republic, Malaysia, Germany –

MEANING – “a telco” is not Telenor, “a bank” is not

DnB NOR, “an oil company” is not StatoilHydro……

• Specific numbers may be old (page size, cache size,

IO speed). But the logic should still apply, though of

course the massive changes currently may lead to

this logic producing another result…..

• This is not a full course of tuning in large databases,

it is to make you aware of what is out there…

Copyright © 2015 Accenture All Rights Reserved.

6

1. Introduction

Basic arithmetic

0.000 sec x 6,000,000 = 0 sec

0.012 sec x 6,000,000 = 72000 sec = 20 hours

Many designers
think this is the
database speed

And this may be
the real database

speed

Copyright © 2015 Accenture All Rights Reserved.

7

1. Introduction

Poor performance

• Poor performance in the database and the code using the

database is the most common reason for poor system

performance.

• Poor performance may render an otherwise good system

useless. Or despised. Or lead to ineffective organisations

and numerous coffee breaks….

• Problems with performance may cause large delays in the

final phases of a project, though should be more

manageable than other issues that may occur at this stage.

• Finally, there is a lack of understanding that optimising

code may drastically alter CPU &IO consumption.

Therefore, more HW is the normal (often wrong) answer.

Copyright © 2015 Accenture All Rights Reserved.

8

1. Introduction

Why is there still a problem

• HW is faster. CPU, disks, network, memory,
everything is much faster now than 10 years ago.

• Moore’s law: Integrated circuits would double in
performance every 18 months.

• Why is there still a problem?

• Niklaus Wirth’s law: Software is getting slower
more rapidly than hardware becomes faster.

• To be more specific – Gate’s law: The speed of
commercial software generally slows by fifty
percent every 18 months.

Copyright © 2015 Accenture All Rights Reserved.

9

1. Introduction

Why is there still a problem

• Databases are now more finely modelled, catching more data, and
creating complexities an order of magnitude greater.

• Flexible, parameterised, configurable system use many small parameter
tables, which are used in every select. So earlier when a select
referenced 2-3 tables, it may now reference 8-10 tables to fetch the
same data. (And beware if a system is “generic”)

• Greater ambitions – meaning – now much larger data volumes are
stored. 10-15 years ago, we were stingy when designing databases.

• And – even if CPUs double their speed every 18 month, disk IO speed
has only increased 10-100 x since the 1960s.

• Shift to client – server – and now network computing: Adds network
latency, integration with other systems, much larger data volumes, more
complex user interfaces, more complex processes and a large degree of
aggregation of information.

Copyright © 2015 Accenture All Rights Reserved.

10

1. Introduction

Example of data modelling

Loan

Cust_id Balance

10 2,405,256

20 1,530,203

Loan

Cust_id Loan-_series_id

10 1,562,030

20 1,830,203

Loan_series (one record for every month throughout 20 years)

Loan_series_id Year Month Org_amount Remaining Interests

1,562,030 2008 01 2,405,256 2,395,256 23,952

1,562,030 2008 02 2,405,256 2,375,256 23,752

… … … … …

1,562,030 2028 12 2,405,256 20,000 200

Earlier modelling,
1 record pr loan

2 million

customers

2 million rows

482 million rows

Recent modelling,
241 records pr

loan

Functionally more flexible, but at a cost

Copyright © 2015 Accenture All Rights Reserved.

11

2. Tune the SW

Note: Tuning of SQL is typically a 40 hours introduction

course + 5 years experience.

This is just a broad overview, so you will know there is more

(much more) to know.

– Indices

– Efficient SQL

– Efficient code & design

Basic principles

- Divide and conquer

- Minimise the fetch of everything

Copyright © 2015 Accenture All Rights Reserved.

12

2. Tune the SW

A DBMS model

Page

4 KB

max 255

rows

(15 byte)

Disks

Though, 150 bytes pr record

=> 26 rows pr page

NetworkTrack

Typical IO time: 10 ms for a page read

NOTE: Page size Oracle 0,5-64K.

Best: Match file system. Minimum 4

data rows. The larger the better, though

concurrency may dictate otherwiseCopyright © 2015 Accenture All Rights Reserved.

Internal memory (1-2-4-8-16 GB?)

2 GB => 0,5 mill pages of 4 KB CPU

F
ig

u
re

: A
u

d
u

n
 F

a
a
b

e
rg

Reader head

Copyright © 2008 Accenture All Rights Reserved. 13

2. Tune the SW – a. indices

What are indices – real world example

F
ig

u
re

: J
a
n

 H
a
u

g
la

n
d

• Oslo Map

– Map pages

– Index pages

• Index

– Carl Berners Plass 16 G3

– Tullinløkka 10 F2

14

2. Tune the SW – a. indices

What are indices

190K3

190K2

620K1

68270K3

79040K2

21100K1

21299K3

08529K2

43332K1

24701K3

53701K2

98776K1

38270K3

43310K2

00000K1

10297K3

00544K2

11000K1

06242K3

97630K2

11111K1

377K3

YXADATA

441K2

000K1

220K3

CXBDATA

030K2

100K1

089K3

BYADATA

034K2

100K1

162K3

CYADATA

075K2

110K1

204K3

CYADATA

693K2

111K1

......

......

Data pages

Index leaf pages

Index pages

F
ig

u
re

: J
a
n

 H
a
u

g
la

n
d

Copyright © 2015 Accenture All Rights Reserved.

15

2. Tune the SW – a. indices

What are indices

• A tree downwards through index pages, and on the leaf
pages there is a pointer to the very page and an offset for
the row in question.

• The indices are stored in index spaces (corresponding to
table spaces)

• The disk space used by the index spaces may be as large
as for the table spaces.

• Since the columns of an index is (normally) fewer than in
the complete row, more are stored in a page (though max
255). Thus a index scan is faster than a table scan.

• May dramatically lower the number of pages read to find a
row. Read through 3-4 layers of indices (pages), versus
scanning the whole table with thousands of pages.

Copyright © 2015 Accenture All Rights Reserved.

16

2. Tune the SW – a. indices

Full Table Scan

SELECT K2

FROM SIMPLE_TABLE

WHERE DATA = ‘X’

• All yellow keys match

• All blue values returned

• All red pages scanned

190K3

190K2

620K1

68270K3

79040K2

21100K1

21299K3

08529K2

43332K1

24701K3

53701K2

98776K1

38270K3

43310K2

00000K1

10297K3

00544K2

11000K1

06242K3

97630K2

11111K1

377K3

YXADATA

441K2

000K1

220K3

CXBDATA

030K2

100K1

089K3

BYADATA

034K2

100K1

162K3

CYADATA

075K2

110K1

204K3

CYADATA

693K2

111K1

......

......

Data pages

Index leaf pages

Index pages

• Let us assume the table

has 50 mill rows, 20

rows pr page. (page 4K,

row 200 bytes).

• In mean 1.250.000 page

reads to find a random

row.

• 10 ms pr page read…..

12.500 sec = 3,5 hours

F
ig

u
re

: J
a
n

 H
a
u

g
la

n
d

Copyright © 2015 Accenture All Rights Reserved.

17

2. Tune the SW – a. indices

Matching Index Scan

SELECT DATA

FROM SIMPLE_TABLE

WHERE K1 = 0

AND K2 = 3

• All green keys match

• All yellow index entries

used

• All blue values returned

• All red pages scanned

• Let us assume the table

has 50 mill rows, 20

rows pr page.

• Indeces: 20 bytes – 200

on each page. 250.000

leaf pages, need 3 levels

of index pages.

• 5 IOs -> 50 ms.

F
ig

u
re

: J
a
n

 H
a
u

g
la

n
d

0

0

0

7

4

0

190K3

190K2

620K1

682K3

790K2

211K1

21299K3

08529K2

43332K1

24701K3

53701K2

98776K1

38270K3

43310K2

00000K1

10297K3

00544K2

11000K1

06242K3

97630K2

11111K1

377K3

YXADATA

441K2

000K1

220K3

CXBDATA

030K2

100K1

089K3

BYADATA

034K2

100K1

162K3

CYADATA

075K2

110K1

204K3

CYADATA

693K2

111K1

......

......

Data pages

Index leaf pages

Index pages

Copyright © 2015 Accenture All Rights Reserved.

18

2. Tune the SW – a. indices

Non-matching Index Scan

SELECT DATA

FROM SIMPLE_TABLE

WHERE K3 = 7

• All yellow keys match

• All blue values returned

• All red pages scanned

• Let us assume the table

has 50 mill rows, 20

rows pr page.

• Indices: 20 bytes – 200

on each page. 250.000

leaf pages

• 125.000 IOs -> 1250 s.

190K3

190K2

620K1

68270K3

79040K2

21100K1

21299K3

08529K2

43332K1

24701K3

53701K2

98776K1

38270K3

43310K2

00000K1

10297K3

00544K2

11000K1

06242K3

97630K2

11111K1

377K3

YXADATA

441K2

000K1

220K3

CXBDATA

030K2

100K1

089K3

BYADATA

034K2

100K1

162K3

CYADATA

075K2

110K1

204K3

CYADATA

693K2

111K1

......

......

Data pages

Index leaf pages

Index pages

F
ig

u
re

: J
a
n

 H
a
u

g
la

n
d

Copyright © 2015 Accenture All Rights Reserved.

19

2. Tune the SW – a. indices

Specify your select

SELECT K2, K3

FROM SIMPLE_TABLE

WHERE K3 = 7

• Will result in a scan of

the index leaf pages

• No read of data pages

necessary.

• This is one reason to

avoid SELECT * and

rather specify the

columns.

• Sometimes we add a

missing column to the

index

• If you have many hits,

you may save 50% of the

IO.

• Few hits, negligible gain.

190K3

190K2

620K1

68270K3

79040K2

21100K1

21299K3

08529K2

43332K1

24701K3

53701K2

98776K1

38270K3

43310K2

00000K1

10297K3

00544K2

11000K1

06242K3

97630K2

11111K1

377K3

YXADATA

441K2

000K1

220K3

CXBDATA

030K2

100K1

089K3

BYADATA

034K2

100K1

162K3

CYADATA

075K2

110K1

204K3

CYADATA

693K2

111K1

......

......

Data pages

Index leaf pages

Index pages

F
ig

u
re

: J
a
n

 H
a
u

g
la

n
d

Copyright © 2015 Accenture All Rights Reserved.

20

2. Tune the SW – a. indices

Sequential prefetch

• A correction – the table scans are in fact

more efficient than depicted in the earlier

examples.

• A mechanism “Sequential prefetch” (or

“scatter read”) is invoked when the DBMS

discovers that it is reading in sequence

through the pages (typically 3 pages in

sequence within 10 page reads).

190K3

190K2

620K1

68270K3

79040K2

21100K1

21299K3

08529K2

43332K1

24701K3

53701K2

98776K1

38270K3

43310K2

00000K1

10297K3

00544K2

11000K1

06242K3

97630K2

11111K1

377K3

YXADATA

441K2

000K1

220K3

CXBDATA

030K2

100K1

089K3

BYADATA

034K2

100K1

162K3

CYADATA

075K2

110K1

204K3

CYADATA

693K2

111K1

......

......

Data pages

Index leaf pages

Index pages

• Starts to read 50 and 50 pages, typically at 30 ms (compared to 10 ms for one

page). Leading to 25.000 read operations in a full table scan, or 750 / 2 sec =

6,25 minutes to find a random row (mean).

• Also the non-matching index scan will start prefetching. Leading to 4.000

read operations, or 120 / 2 sec = 60 sec.

• This can be utilised in large batch reads!

• Typically – if you try to select more than 10% of the rows in a table, the

optimiser will go for a table scan.

F
ig

u
re

: J
a
n

 H
a
u

g
la

n
d

Copyright © 2015 Accenture All Rights Reserved.

21

2. Tune the SW – a. indices

Function index

select lname, empno, sal

from emp where

upper(lname) = ‘FAABERG';

Eriksen Erik 123

Faaberg Audun 154

Faaberg Rasmus 549

Horpen Hallvor 798

Tallaksen Tallak 101

ERIKSEN

FAABERG

HORPEN

TALLAKSEN

• A standard select will not find an
index to ‘FAABERG’.

• Result is a table scan, and
convert every ename to upper.

• A function index is an index with
a function value store.

• DBMS follows directly the
function index, and uses the
pointer down to the data page.

• Note also that the same problem
arises when comparing the text
"123" vs. the number 123 !!

Original
table

Function
index

F
ig

u
re

: A
u

d
u

n
 F

a
a
b

e
rg

Copyright © 2015 Accenture All Rights Reserved.

22

2. Tune the SW – b. efficient SQL

Optimiser

Disks

Statistics

• Note: The optimiser is just a machine (or more correct

– another piece of software) doing the best it can.

• It may err – and with disastrous results.

• A DBA I know – after several hours of testing different

setups: “Finally I framed the optimiser!”

• Cost based optimiser:

Uses statistics, and

weighs operations.

Copyright © 2015 Accenture All Rights Reserved.

Network

F
ig

u
re

: A
u

d
u

n
 F

a
a
b

e
rg

Reader head

Internminne (1-2-4-8-16 GB?)

2 GB => 0,5 mill pager
CPU

Optimiser

23

2. Tune the SW – b. efficient SQL

Access path

• Access path is the way and sequence the DBMS applies

rules. Using an index? Joins – in which order? Sort?

• It may be necessary to understand the access path.

• A database simulator tool may help you.

• In large projects with large database – we sometimes have

a centralised function approving all SQL (typically testing in

with the simulator… or on a large test database).

• You set up the simulator with the estimated number of rows

in the different tables, indicates a cardinality / distribution

(meaning – for large projects this is no small effort!)

Copyright © 2015 Accenture All Rights Reserved.

24

2. Tune the SW – b. efficient SQL

Looking for the millionaire

Before we start looking at SQLs and access paths - let us look at the real

world. Tax is fun.

How would you find the millionaires in Modalen county (one of the

smallest counties in Norway). By hand, by sifting through index cards.

a) Give me index cards of the millionaires in Norway, with the county

added on. Read through the index cards.

b) Give me all index cards of Modalen. I will scan through all of it.

And for Oslo?

t_adresse

Modalen

t_person t_loenn

Pnr =
070777 32678

Pnr =
080888 31293

Loenn = 469 000

Loenn = 1 296 059

Distribution info

Modalen: 274 taxpayers

Oslo: 439 272 taxpayers

Over 1 mill in Norway: 60 261
Oslo

Copyright © 2015 Accenture All Rights Reserved.

25

2. Tune the SW – b. efficient SQL

Access path

Consider the employee table

With no function index:

With an function index on upper(ename):

select lname, empno, sal

from emp where

upper (lname) = ‘FAABERG';

Eriksen Erik 123

Faaberg Audun 154

Faaberg Rasmus 549

Horpen Hallvor 798

Tallaksen Tallak 101

0 SELECT STATEMENT Optimizer=COST

1 0 TABLE ACCESS (FULL) OF ‘EMPLOYEE_TABLE‘ 50

0 SELECT STATEMENT Optimizer=CHOOSE

1 0 INDEX (RANGE SCAN) OF ‘UPPER_ENAME_IDX' (NON-UNIQUE) 1

Copyright © 2015 Accenture All Rights Reserved.

26

2. Tune the SW – b. efficient SQL

Access path

SELECT e.employee_id, e.first_name, e.last_name, e.salary

FROM employees e

WHERE EXISTS (SELECT 1

FROM orders o

WHERE e.employee_id = o.sales_rep_id

AND o.customer_id = 144);

ID OPERATION OPTIONS OBJECT_NAME OPT COST

---- ------------------ --------------- ----------- --- ----

0 SELECT STATEMENT CHO

1 FILTER

2 TABLE ACCESS FULL EMPLOYEES ANA 155

3 TABLE ACCESS BY INDX ROWID ORDERS ANA

3 4 INDEX RANGE SCAN ORD_CUST_IX ANA 1

Copyright © 2015 Accenture All Rights Reserved.

subselect has reference to column in the outer select

27Copyright © 2008 Accenture All Rights Reserved.

2. Tune the SW – b. efficient SQL

Access path

SELECT e.employee_id, e.first_name, e.last_name, e.salary

FROM employees e

WHERE e.employee_id IN

(SELECT o.sales_rep_id

FROM orders o WHERE o.customer_id = 144);

ID OPERATION OPTIONS OBJECT_NAME OPT COST

---- ------------------ --------------- ----------- --- ----

0 SELECT STATEMENT CHO

1 NESTED LOOPS 5

2 VIEW 3

3 SORT UNIQUE 3

4 TABLE ACCESS FULL ORDERS ANA 1

5 TABLE ACCESS BY INDEX ROWID EMPLOYEES ANA 1

6 INDEX UNIQUE SCAN EMP_ID_PK ANA 1

A rewrite of the SQL

Copyright © 2015 Accenture All Rights Reserved.

28Copyright © 2015 Accenture All Rights Reserved.

2. Tune the SW – b. efficient SQL

Correlated subselect - execution

employees

employee_id last_name first_name salary
100002 hansen nils ###
100003 kvam per ###
100007 torsen johan ###
100008 eri johan ###
100010 hoff magne ###
100011 sand knut ###
100012 ludvigsen anders ###
100013 knutsen jørgen ###
100017 …. …. …
100018 …. …. …

orders

order_id customer_id sales_rep_id
200102 201 100010
202012 144 100012
259037 090 100008
310807 144 100007
338765 937 100007
348999 144 100007
560312 771 100012

Full table scan
select employee,
first_name,
last_name,
salary
from employees

candidate list:

100002 …. ….
100003 …. ….
100007 …. ….
100008 …. ….
100010 …. ….
100011 …. ….
100012 …. ….
100013 …. ….
100017 …. ….
100018 …. ….

1

Sets up a
candidate list
(with all rows
in the table)

2

candidate list
202012 144 100012
310807 144 100007
348999 144 100007

3

4
Check done for
every single candidate
via index

Create candidate list

5

Scann candidate list

The candidate list for orders is always the same,
still it must be created for every single employee…..
In one pass it will match 202012, in another pass it will
Match 310807 and 148999.

SELECT e.employee_id, e.first_name, e.last_name, e.salary
FROM employees e WHERE EXISTS

(SELECT 1 FROM orders o WHERE e.employee_id =
o.sales_rep_id

AND o.customer_id = 144);

Copyright © 2015 Accenture All Rights Reserved.

2. Tune the SW – b. efficient SQL

Non correlated subselect - execution

employees
employee_id last_name first_name salary
100002 hansen nils ###
100003 kvam per ###
100007 torsen johan ###
100008 eri johan ###
100010 hoff magne ###
100011 sand knut ###
100012 ludvigsen anders ###
100013 knutsen jørgen ###
100017 …. …. …
100018 …. …. …

orders
order_id customer_id sales_rep_id
200102 201 100010
202012 144 100012
259037 090 100008
310807 144 100007
338765 937 100007
348999 144 100007
560312 771 100012

Uses index
on customer
SELECT sales_rep_id

FROM orders

WHERE customer_id = 144

1

Set up a
candidate list
(just 3 hits)

2

candidate list
202012 144 100012
310807 144 100007
348999 144 100007

3

4

Scann candidate list

Complete candidate list
with lookup via index
SELECT employee_id, first_name, last_name, salary

FROM employees

WHERE employee_id = 100007

SELECT e.employee_id, e.first_name, e.last_name, e.salary

FROM employees e

WHERE e.employee_id IN

(SELECT o.sales_rep_id

FROM orders o WHERE o.customer_id = 144);

30

2. Tune the SW – b. efficient SQL

Correlated versus non correlated subselect

• A subselect is correlated if it has references to columns in

the outer select.

• OK as extra refinement and filtering. Extremely expencive

as main filtering.

• A subselect is non correlated if it does not have references
to columns in the outer select, meaning you can execute
the subselect independantly – and as the first SQL in a
stepwise exwecution plan.

• OK as main filtering. Extremely expencive as extra
refinement filtering.

Copyright © 2015 Accenture All Rights Reserved.

31Copyright © 2008 Accenture All Rights Reserved.

2. Tune the SW – b. efficient SQL

Missing join predicate

T_KRAVHODE

KRAVHODE_ID SAK_ID

10 100

20 200

T_KRAVLINJE

KRAVHODE_ID KRAVLINJE_ID

20 2000

30 3000

QUERY RESULT

SAK_ID KRAVLINJE_ID

100 2000

100 3000

200 2000

200 3000

SELECT H.SAK_ID

,L.KRAVLINJE_ID

FROM T_KRAVHODE H

,T_KRAVLINJE L

This is the infamous

Carthesian product

A X B ={ (a,b)| a Є A A b Є B }

Copyright © 2015 Accenture All Rights Reserved.

32Copyright © 2008 Accenture All Rights Reserved.

2. Tune the SW – b. efficient SQL

Why are carthesians disastrous?

Person

Person_number Name

05056x47126 Hans Alnes

09118y10017 Kari Thune

Account

Person_number Account_number

05056x47126 1533 289 08971

05056x47126 1533 289 08988

05056x47126 In mean 5 accounts

09118y10017 1540 780 01122

09118y10017 9833 010 89876

09118y10017 In mean 5 accounts

SELECT P.Person_number

,A.Bank_account

FROM T_Person P

,T_Account A

4,5 million

persons

22,5 million

accounts

SELECT P.Person_number

,A.Bank_account

FROM T_Person P

,T_Account A

WHERE P.Person_number = A.Person_number

Here Hans Alnes is matched with ALL accounts in

Norway (22,5 millions of them)

Thereafter Kari Thune is matched with ALL accounts

Giving a list of 4,5 * 22,5 million² = 101,25 mill mill

101 250 000 000 000 items

25 million seconds (seq prefetch)

Here Hans Alnes is matched with his 5 accounts

Thereafter Kari Thune is matched with her 5 accounts

Giving a list of 4,5 million * 5 = 22,5 mill

(30-40 seconds with seq prefetch)

33

2. Tune the SW – b. efficient SQL

Can I predict the execution sequence of

a compound statement?

• No sequence granted, but most likely something like:

select mandatory1.x (7)
,optional.y

from mandatory1 (2 or 3)
inner join mandatory2 (3 or 2)

on mandatory1.z = mandatory2.z
left outer join optional (4)

on optional.u = mandatory2.u
where mandatory2.w = ?
and mandatory1.a in

(non-correlated subselect) (1)
and exists (correlated subselect)(5)

order by mandatory.x (6)

Copyright © 2015 Accenture All Rights Reserved.

34Copyright © 2008 Accenture All Rights Reserved.

2. Tune the SW – b. efficient SQL

Connection statement cache

• A DBMS must translate the SQL statements sent to it. This is a CPU-demanding

process (finally…. till now we have mostly looked at IO and memory….).

– Load into shared pool

– Syntax parse (correct SQL as such)

– Semantic parse (are all table & column names correct, check dictionary)

– Optimisation (create access plan with info from db statistics)

– Create executable

• You may set up each connection with a cache of SQL statements already translated,.

• Requires the SQL to be exact the same. Is case sensitive. Must use bind variables,

not values.

select order_id, account_id

from order_item

where account_id = :OrderId

select order_id, account_id

from order_item

where account_id = 158293

select Order_Id, Account_Id

from Order_Item

where Account_Id = :OrderId

Does not

match

neither

• Hint: Always user bind variables, even

when you work with a constant. And

use the same variable name

35

• The SQLs you meet in real life are often much more complex than the

examples I have given.

• Most important tool – sql statistics (all DBMSs have some way for

gathering this).

• A large system may have thousands of SQLs spread out in the code (or as

stored procedures referenced in the code).

• In a problem situation, normally a handful (5-10-20) SQLs are causing

problem. Though many more may be inefficient….

• First of all, identify them.

• Look for logical reads and physical reads in statistics, thus identifying the

problem candidates.

• Candidates may be:

– Light SQLs, somewhat inefficient, but very frequently executed

– Heavy SQLs with massive reads (logical and/or physical)

2. Tune the SW – b. efficient SQL

SQL tuning

Copyright © 2015 Accenture All Rights Reserved.

36

2. Tune the SW – b. efficient SQL

Tools - Detector
PROGRAM SQL CPUPCT INDB2_CPU GETPAGE

-------- ---------- ------- ------------ --------

K411S024 8798695 19.92% 19:51.943399 25044646

K415B940 7206008 5.83% 05:12.778640 42480939

K231B510 521364 4.97% 04:26.795714 12158914

K278U950 4060 4.03% 03:36.202277 13502081

K411S025 4072793 3.75% 03:21.168218 10610520

K278BAN1 16086 2.79% 02:29.905171 8802622

DSNESM68 8655 2.54% 02:16.268729 23541223

K411S103 1966527 1.93% 01:43.911804 4951095

K2300211 3068353 1.76% 01:34.334010 3433748

09.02.2009
kl 0800-1200

Start optimising from the top.
Use information in the tool.
Optimse CPU-consumption? IO? Elapsed time?

Copyright © 2015 Accenture All Rights Reserved.

37

2. Tune the SW – b. efficient SQL

Example 1

DECLARE C_TREKKDATA_3 CURSOR FOR

SELECT DISTINCT A.KREDITORS_REF

, A.KODE_TREKKALT

, A.SATS

, A.BELOP_SALDOTREKK

, A.BELOP_TRUKKET

, A.DATO_OPPFOLGING

, O.TSS_OFFNR

FROM V1_ANDRE_TREKK A

, V1_TREKK_I_FAGOMR F

, V1_TSS_SORTDATA O

WHERE A.TREKKVEDTAK_ID = :H

AND A.LOPENR = 9999

AND :H = 9999

AND F.KODE_FAGOMRAADE = "IT26"

AND O.KREDITOR_ID_TSS = :J

AND O.LOPENR = 9999

FOR FETCH ONLY

• Real volumes, meaning 5-

25 millions in A & F

• 15 CPU hours

Copyright © 2015 Accenture All Rights Reserved.

38

2. Tune the SW – b. efficient SQL

Example 1 - answer

DECLARE C_TREKKDATA_3 CURSOR FOR
SELECT DISTINCT A.KREDITORS_REF
, A.KODE_TREKKALT
, A.SATS
, A.BELOP_SALDOTREKK
, A.BELOP_TRUKKET
, A.DATO_OPPFOLGING
, O.TSS_OFFNR
FROM V1_ANDRE_TREKK A
, V1_TREKK_I_FAGOMR F
, V1_TSS_SORTDATA O
WHERE A.TREKKVEDTAK_ID = :H
AND A.LOPENR = 9999
AND :H = 9999
AND F.TREKKVEDTAK_ID = A.TREKKVEDTAK_ID
AND F.KODE_FAGOMRAADE = "IT26"
AND O.KREDITOR_ID_TSS = :J
AND O.LOPENR = 9999
FOR FETCH ONLY

• Same volumes, almost

same select

• 3 CPU seconds

ANDRE_TREKK
A

large table

TREKK_I_FAGOMR
F

large table

TSS_SORTDATA
O

small table

9999
TREKKVEDTAK_ID

Copyright © 2015 Accenture All Rights Reserved.

39

2. Tune the SW – c. Efficient code and design

Introduction

• Now we have looked into how to how to make the SQL to execute more

efficient

• Still, the DBMS has to execute the SQLs sent to it.

• Next focus should be to reduce the numbers of calls to SQL. (Remember

the Axe Law: Don’t use it if you don’t mean it).

• Note: In a large project, this must be conveyed to the designers and the

programmers early on. May be expensive to remove general problems

afterwards.

Copyright © 2015 Accenture All Rights Reserved.

40

2. Tune the SW – c. Efficient code and design

The post number lookup

• Do not read over and over again the same value from the DB.

• Example: Verifying address information from 4 million customers.

• Reading the post number table pr customer record -> 4 million reads.

• This specific read may take 1-1,5 hours of a large run.

• Read the whole post number table into memory. 10.000 reads, after a short

time a multiple page read (40 pages – 2 IOs of 50 ms) -> 0,1 second.

• In reality the difference will be much smaller, post number table could be

pinned in Keep Buffer. But still you have to invoke the DBMS subsystem,

with some 10 000 CPU instructions, as compared to a internal table read.

• The difference is virtually null on small volumes (on which the programmer

typically test), on large volumes the difference is rather inconvenient.

Copyright © 2015 Accenture All Rights Reserved.

41

2. Tune the SW – c. Efficient code and design

Some final words - Solid state databases
• Much of current DBA wisdom is to reduce the number of physical gets, due

to the fact that disks are order of magnitude slower than RAM.

• The most popular disk of the 1980's was the refrigerator-sized 3380 disks,

which contained only 1.2 gig of storage at the astronomical cost of over

$200,000. In today's 2012 dollars, disk in the 1980's costs more than $5,000

per megabyte.

• Today, you can buy 100 GB disks for $100, and 100 GB of RAM Disk (solid-

state disk) for $100,000. (This was 2007)

• Today, you can buy 3 TB disks for $130, and 100 GB of RAM Disk (solid-

state disk) for $100. (nnn.no = 120 GB SSD, 699 kr)

• Meaning, current wisdom regarding IO time is not valid.

• In this environment, the focus is to reduce the number of logical reads

(and to reduce CPU), since the systems now are CPU constrained.

• (We are close to this unknowingly, due to the fact that many high scale disk cabinets have 50GB

or more disk cache, and we typically operate with a cache hit rate of 95-99,5%).
Copyright © 2015 Accenture All Rights Reserved.

42

3. SOA, Object orientation and distance

• In SOA, you present services. This call gives you for instance “all product

information on customer x”. It returns an object, which the code manipulates.

• What may be hidden for the developer, is that this makes 50 database calls

to the system’s own database, it performs 5 calls to other systems, each with

their fair amount of database calls, and if you are lucky, an out of the house

call to an external credit rating company. All in all, it takes 5-6 seconds for a

normal private customer.

• What if Statoil is the customer?

• This distance is correct object orientation. If a developer has an object and

methods that work correctly, he/she shall not worry about the implementation

of these objects.

• But on the other hand, for performance it is important to know the underlying

infrastructure (both software and hardware).

• My favourite quote: “System X is but a property in my parameter file”….

Copyright © 2015 Accenture All Rights Reserved.

3. SOA, Object orientation and distance

Example

DB2

CICS

Batch-
process

Large data object is created

High CPU consumption on DB server,
Massive impact on other systems

95% is
thrown
away in the
Batch-
process

Person
register

Person number + status
Name
Civil status
Current adress
Current county
All previous adresses
All previous counties
All previous countries
Immigration date
Citizenship date
Bank account

Phone number
Mobile number
Email adress
Foreign stays
Person status
Description of

person status
Incapable and date
Filial used
and 7 more

100%
CPU

Person number + status
Name
Civil status
Current adress
Current county
All previous adresses
All previous counties
All previous countries
Immigration date
Citizenship date
Bank account

Phone number
Mobile number
Email adress
Foreign stays
Person status
Description of

person status
Incapable and date
Filial used
and 7 more

Copyright © 2015 Accenture All Rights Reserved.

3. SOA, Object orientation and distance

New solution

Small data object created

personnummer + status

Low CPU consumption, short run time

Person nummer + status Run time reduced 90%
CPU consumption reduced
by 95%.
No impact on other
systems now.

DB2

CICS

Batch
prosess

Person
register

Copyright © 2015 Accenture All Rights Reserved.

45

4. New directions

The traditional relational database is very good for certain operations, and not

so good for other:

Excells in:

•Finding one or few rows via indexes. (That is often pre-defined searches).

•Transactional handling, for instance flight booking, concert ticketing.

•Storing structured data in a space efficient way.

Not so good in:

•Searching through large data volumes with joins through multiple tables.

(Analytics).

•Storing less structured data. (Comments in a blog, or Facebook).

•Storing and retrieving large volumes of read only data.

Copyright © 2015 Accenture All Rights Reserved.

46

4. New directions

SQL accellerators - divide and conquer

The tables are copies of

the actual operational

database

Different strategies for

synchronisation:

•Daily complete load.

•Continous synch

Copyright © 2015 Accenture All Rights Reserved.

CPU CPU CPU CPU………

………

Lots of

CPUs

with their

own disc

rack

TableA

TableB

TableC

Tables are

distributed

(striped)

over a large

number of

disc racks.

All SQLs are executed as table scans.

Data for all join tables are fetched in 1 scan.

Advantage: Speed.

Before -->> After

16 hours 39 seconds

1 hour 8 seconds

1:30 min:sec

Disadvantage:

0,001 sec 1-2 seconds

8

I work currently with a SQL

accellerator with 80 CPUs….though

the range is

40 – 80 – 140 – 280 – 560 – 1120

CPUs and corresponding disc racks

47

4. New directions

NoSQL – or NOSQL?

No SQL or

Not Only SQL

Many different principles

and solutions.

http://nosql-database.org

Examples:

Hadoop, Cassandra

MongoDB, GenieDB

Copyright © 2015 Accenture All Rights Reserved.

CPU CPU CPU CPU………

………

Same

principle

as accellerators

TableA

TableB

TableC

Not all data you want to store is higly structured and tabular.

Not all data is strictly transactional and must be persisted in an all

or nothing strategy.

Not all data is of a type where you need 100% consistency control.

Not all data is write / update / delete. A lot is write once, read often.

Traditional applications where NoSQL may help: Payments archive in bank. Electricity

metering. And many more, the industry is held back by traditional thinking.....

New applications: Social medias, mass data monitoring, data which is not updated, rather

reentered (exam results? And many others). And where strict transactional control is not

the issue.

http://nosql-database.org/

48

5. Performance engineering

PE through the project phases - challenges

1. Assumed High
Performance.

2. No EXPLICIT
definition of

performance
requirements

1. Design
independent of
performance
requirement

2. Lack knowledge
of Data volumes
and scalability

3. Design reviews

do not focus on
performance

1. Lack of coding
guidelines

2. Code profiling
not part of Build

3. Lack of expertise
in profiler tools
usage

4. Code reviews
do not focus on
Performance

1. Lack of explicit
Performance test
plan

2. Lack of test

environment / test
data to simulate
production load

3. Insufficient Load

Stress Stability
tests

4. No Explicit
performance sign-

offs due to lack of
clear requirements.

1. Lack of proactive
monitoring

2. Critical problems
in production

3. High time to
resolve critical
problems

4. Lack of expertise
in monitoring tools

5. Risk with
credibility / possible

penalties

PROBLEMS PROBLEMS PROBLEMS PROBLEMS PROBLEMS

Analysis Design Build Test Run

Copyright © 2015 Accenture All Rights Reserved.

49

1. Introduction

Basic arithmetic

0.000 sec x 6,000,000 = 0 sec

0.012 sec x 6,000,000 = 72000 sec = 20 hours

Many designers
think this is the
database speed

And this may be
the real database

speed

Copyright © 2015 Accenture All Rights Reserved.

