Using OptimalJ: Tutorials

OptimalJ 3.1

OptimalJ 3.1
Using OptimalJ: Tutorials

Restricted Rights Notice

This document and the product referenced in it are subject to the following legends:

Access is limited to authorized users. Use of this product is subject to the terms and
conditions of the user's License Agreement with Compuware Corporation. ? 2001?2003
Compuware Corporation. All rights reserved. Unpublished ? rights reserved under the
Copyright Laws of the United States. U.S. GOVERNMENT RIGHTS-Use, duplication, or
disclosure by the U.S. Government is subject to restrictions as set forth in Compuware
Corporation license agreement and as provided in DFARS 227.7202-1(a) and 227.7202-3(a)
(1995), DFARS 252.227-7013(c)(1)(ii)(OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or
FAR 52.227-14 (ALT I1I), as applicable. Compuware Corporation. This product contains
confidential information and trade secrets of Compuware Corporation. Use, disclosure, or
reproduction is prohibited without the prior express written permission of Compuware
Corporation.

Trademarks

Compuware and OptimalJ are registered trademarks of Compuware Corporation. Windows
and all Windows-based trademarks and logos are trademarks or registered trademarks of
Microsoft Corporation in the United States and other countries. Java and all Java-based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc.
in the United States and other countries. The OptimalJ product includes code licensed from
RSA Security, Inc. and software developed by Netbeans, the Apache Software Foundation
and ObjectWeb Group. Apache Tomcat and ANT- Copyright (c) 2000 The Apache Software
Foundation. Credits go to these organizations and their contributors. CICS, DB2, IBM, and
0S/2 are trademarks of International Business Machines Corporation. SOLID Server (TM),
SOLID Bonsai Tree (TM), SOLID Remote Control (TM), and SOLID SQL Editor (TM) are
trademarks of Solid Information Technology Ltd. Acrobat ? Reader copyright ? 1987-1998
Adobe Systems Incorporated. All rights reserved. Adobe, Acrobat, and Acrobat Reader are
trademarks of Adobe Systems Incorporated. All other company or product names used in
this publication are trademarks of their respective owners.

OptimalJ 24-hour online information and support

For using the OptimalJ suite of products, two Web sites are available. JavaCentral, at
http://javacentral.compuware.com, lets you communicate with other Java developers
through forums. You will also find FAQ's, technical tips, news and other information to help
you to build your applications. Support for the JavaCentral forums is available to anyone.
Register online at http://javacentral.compuware.com.

Customers who have purchased OptimalJ with a support contract can use FrontLine at
http://frontline.compuware.com. This provides access to online support information
including product documentation and tutorials, up-to-date platform availability, incident
submission and a list of known software problems.

For the latest version of the documentation always check the FrontLine site.

Your suggestions and comments about OptimalJ documentation are highly valued. Please
send your reactions to:

Compuware Europe B.V. P.O.Box 12933 1100 AX Amsterdam The Netherlands
e-mail address: admin@optimalj.com

OptimalJd 3.1

Contents

1 Tutorials
1.1 Your first Optimald application 11
1.2 Creating a new pProject 1-34
1.3 Settingup aSOLIDdatabase i 1-38
1.4 Importing adomainclassmodel 1-49
1.5 Generating a domain model from database definitions 1-54
1.6 Creating and distributing domain patterns 1-61
1.7 Defining a domain service model 1-70
1.8 Defining a component model 1-82
1.9 Modifying Access Behavior 1-90
1.10 Adding businessrules 1-101
1.11 Creating a two-tier application (DAO component) 1-112
1.12 Using the page iterator in a multitier environment 1-118
1.13 Creating message-driven COmMponNents, 1-123
1.14 Creating JMS durable subscribers i 1-135
1.15 Defining presentation model extensions 1-147
1.16 Integrating with CORBA 1-164
1.17 Integrating with CICS COBOLVia JCA. e 1-173
1.18 Integrating with CICS COBOLviaJMS i, 1-184
1.19 Integrating with IMS COBOL. e 1-198
1.20 Handling the COBOLREDEFINES clause 1-210
1.21 Integrating aWeb service 1-220
1.22 Developing and deploying aWeb service., 1-232
1.23 Creating the application EAR 1-242
1.24 Creating your own technical key generator 1-249
1.25 Creating Implementation Patterns i, 1-255
1.26 Creating technology patterns 1-262

Using OptimalJ: Tutorials iii

OptimalJd 3.1

1.27
1.28
1.29
1.30

Creating metamodels 1-283
Changing the default Optimald metamodels 1-290
Installing alocal CVS server e 1-294
Working with Optimald projectsin CVS 1-305

OptimalJd 3.1

Chapter 1 Tutorials

The tutorials provide step-by-step instructions describing the various
aspects of building an application with OptimalJ.

General tutorials

Domain level tutorials
Application level tutorials
Integration level tutorials
Code level tutorials

Meta model level tutorials

1.1 Your first OptimalJ application
In this tutorial, you will create a simple application with two classes:
Salesorder and Orderline.
Creating a application involves:

= Creating adomain package that contains domain classes with domain
attributes

= Creating a domain association between the two domain classes

Using OptimalJ: Tutorials 1-1

OptimalJd 3.1

= Generating all the models and code and compiling the application
= Setting up the database to test the application

The generated application allows you to create, retrieve, update, and
delete Salesorders and Orderlines.

Prerequisites
None

Duration
This tutorial takes approximately one hour to complete.

Objectives
In this tutorial, you learn how to:

Create a model package, domain class, and domain class association
= Create application models from the domain model

= Generate and compile code

= Create database tables

= Test the application

Step 1 ? Prepare the filesystem
In your file system, create the following directories:

1. \Opti mal J\ myAppl i cati on\ nyAppModel ?thisdirectory holds
your model definitions and the code generated for creating the
DBMS.

2. \Opti mal J\ nyAppl i cati on\ nyAppEj bCode?this directory
contains the EJB application code.

3. \Optimal J\ nyAppl i cati on\ nyAppWebCode?this directory
contains the Web application code.

Step 2 ? Create a new project
To create a new project:

1. From the menu, select Project>New OptimalJ Project.

2. Set the project name to MyFi r st Proj ect and click Next.

3. Select the type of project. Select New Mbdel and browse to
\ Opti mal J\ myAppl i cati on\ nyAppMdel . Click Open and
then Next.

1-2 Tutorials

OptimalJd 3.1

4. Create a package structure. Enter or der sanpl e as the fully
qualified package name.

Set the initial package structure to Three Tier Application
St ruct ur e and click Next.

Note: By selecting a three-tier initial package structure, you create a
structure containing a domain model with a class model, and an
application model with a database, an EJB model and a Web model.
These models contain the appropriate Technology Pattern to generate
elements for a three-tier application (Web components, EJB components
and a database schema).

5. Configure mount point settings. The EJB and Web code is
generated in separate directories (or mount points). Keep Mount
each filesystem yoursel f selected, click Next, and then
Finish.

Step 3 ? Inspect the created model packages

1. In the Explorer [Domain Model], select or der sanpl e to see the
nodes.

Figure 1-1 Domain model packages

2. In the Explorer [Application Model], select or der sanpl e to see
the nodes.

Using OptimalJ: Tutorials 1-3

OptimalJd 3.1

Figure 1-2 Application model packages

3. In the Explorer [Code Model], select the elements created in the
code model. As you can see, two type of objects are created:

« Folders to hold the files for the models.

< Files with the extension . xcmto hold the details of the elements
of the models.

1-4

Tutorials

OptimalJd 3.1

Figure 1-3 Code model view

Step 4 ? Create the Salesorder domain class

The domain models in OptimalJd hide implementation details and are
used to generate other models or code. The domain model contains two
models: class and service. OptimalJ generates application model
elements from these domain models.

To create a Sal esor der class in the domain class package:

1. In the Explorer [Domain Model], right-click the domai n. cl ass
package and select New Child>DomainClass to start the Create
DomainClass wizard.

2. In the Name field, enter Sal esor der and click Next.

Using OptimalJ: Tutorials 1-5

OptimalJd 3.1

Figure 1-4 Create Domain Class wizard: Enter Domain Class Name

3. Add attributes to Sal esor der as shown in the illustration below.

To add an attribute, click the Add button and enter or select the
appropriate values for the new attribute. Click in the attribute's

Type field to display a menu of possible type values.

Tutorials

1-6

OptimalJd 3.1

Figure 1-5 Create Domain Class wizard: Enter Attributes

4. Click Finish, ignoring the other wizard pages. This closes the
wizard and creates the class Sal esor der in the domai n. cl ass
model.

The result in the Explorer [Domain Model] looks like this:

Using OptimalJ: Tutorials 1-7

OptimalJd 3.1

Figure 1-6 Domain model with Salesorder

Step 5 ? Create the Orderline domain class
To create the Or der | i ne class in the domain class package:

1. In the Explorer [Domain Model], right-click the donwai n. cl ass
package and select New Child>DomainClass in the pop-up
menu to display the Create DomainClass wizard.

2. In the Name field, enter Or der | i ne, and click Next.

1-8 Tutorials

OptimalJd 3.1

Figure 1-7 Create Domain Class wizard - Enter Name

3. Add attributes to Or der | i ne as shown in the illustration below.
To add an attribute, click the Add button and enter or select the
appropriate values for the new attribute. Click in the attribute's
Type field to display a menu of possible type values.

Using OptimalJ: Tutorials 1-9

OptimalJd 3.1

Figure 1-8 Create Domain Class wizard: Enter Attributes

4. Click Finish, ignoring the other wizard pages. This closes the
wizard and creates the class Or der | i ne in the domai n. cl ass
model.

The result in the Explorer [Domain Model] looks like this:

1-10 Tutorials

OptimalJd 3.1

Figure 1-9 Domain model with Salesorder and Orderline

Step 6 ? View the Domain Class Diagram
To view the UML domain class diagram for your domain model:

1. Inthe Explorer [Domain Model], double-click the domai n. cl ass
model package.

This opens the domain class diagram in the class tab of the Source
Editor.

Using OptimalJ: Tutorials

1-11

OptimalJd 3.1

Figure 1-10 Domain class diagram

Note: Use the toolbar at the top of Source Editor [class] to zoom in or out
of the diagram. A miniature version of the domain class diagram can be
viewed in the Explorer [Diagram Thumbnail]. (If this is not visible, choose
View>Diagram Thumbnail.) The thumbnail view always shows your
entire diagram, and shows the rectangle you are currently viewing in the
diagram editor if you are viewing only part of the diagram. You can drag
this rectangle to view another part of the diagram.

Step 7 ? Create an association between Salesorder and Orderline

Sal esor der must have a composition association with Or der | i ne
where Sal esor der is the composite class composed of the part class

O der | i ne. Because Salesorder is composed of Orderline, an Orderline
can only be associated with one Salesorder and cannot exist without an
association to a Salesorder. Domain associations can be created in the
Explorer [Domain Model] or in the domain class diagram. The last
method is used in this tutorial.

1-12

Tutorials

OptimalJd 3.1

To create the association between Sal esor der and Or der | i ne class,
perform the following steps in the domain class diagram:

1.

4.

5.

In the toolbar at the side of Source Editor [class], click the icon to
create an association.

With the tool selected, click inside the class Salesorder, drag the
mouse to the class Orderline, and release the mouse.

The Create Domain Association wizard now appears.

In the pane Define Association End 1, keep Role Name as
Sal esor der.

Set Aggregation to Composite. OptimalJ sets Multiplicity to
Exactly one.

Click Next.

In the pane Define Association End 2, keep Role Name as
Orderline.

Keep Aggregation as none.

Set Multiplicity to zero or more. This means that a Salesorder
can have no or more then one Orderline.

Click Next.

In the pane Enter Name, keep Name as

Sal esorder _Orderline, and click Finish.

The diagram now contains the association.

Figure 1-11 Domain class diagram: Salesorder is the composite class associated with the part class Orderlines

Using OptimalJ: Tutorials

1-13

OptimalJd 3.1

Step 8 ? Create the DBMS model from the domain model

The DBMS model contains the definitions for relational database tables
used by the application. SQL scripts for creating the tables in the
database are generated from this model.

Note: In this tutorial, you generate the application models one by one.
However you can generate all models in one action by choosing
Model>Update all models.

To create the DBMS model:

1. From the menu, select Model>Generate Model>Generate
Application Models>Generate DBMS from Domain to
display the Generate DBMS Model from Domain Model wizard.

Figure 1-12 Generate DBMS Model from Domain Model

2. Select order sanpl e. donmai n and click Next.

3. Thewizard displays all packages within the application model for
the current project.

1-14 Tutorials

OptimalJd 3.1

Figure 1-13 Generate DBMS Model from Domain Model

Selector der sanpl e. appl i cati on. dbrs and click Finish. This
generates your database model from your domain model, creating
relational data schema and table definitions.

Note: When you execute this step, OptimalJ checks the integrity of your
domain model. OptimalJ always checks model integrity before it
generates models or code.

4. In the Explorer [Application Model], view the generated DBMS
model:

Using OptimalJ: Tutorials

1-15

OptimalJd 3.1

Figure 1-14 Database model

Step 9 ? Create an EJB model from the domain model

The EJB model contains the model information for entity and session
components that will be used to generate entity and session beans. In
this step, you create entity components that will be used to generate
entity beans to access data in the database tables.

To create the EJB model:

1. From the menu, choose Model>Generate Model>Generate
Application Models>Generate EJB from Domain to display
the Generate EJB Model from Domain Model wizard.

1-16 Tutorials

OptimalJd 3.1

Figure 1-15 Generate EJB Model from Domain Model

2. Select order sanpl e. donmai n and click Next.
3. Thewizard displays all packages within the application model for
the current project.

Using OptimalJ: Tutorials 1-17

OptimalJd 3.1

Figure 1-16 Generate EJB Model from Domain Model

Select or der sanpl e. appl i cati on. ej b and click Finish. This
generates your EJB model from your domain model, creating
component and data schema definitions.

4. In the Explorer [Application Model] view the generated model:

1-18 Tutorials

OptimalJd 3.1

Figure 1-17 EJB model

Note: OptimalJ does not create an entity component or a data schema for
Orderline because the association between Orderline and Salesorder is
defined as composite. The EJB entity component and EJB data schema
for Salesorder contain elements for Orderline.

Step 10 ? Create a Web model from the domain model

The Web model contains the definitions for the Web components. The
Web model is used to generate JSP, HTML, and Servlet code.

To create the Web model:

1. From the menu, choose Model>Generate Model>Generate
Application Models>Generate WEB (EJB based) from
Domain to display the Generate Web Model from Domain Model
wizard.

The wizard displays all packages within the current project.

Using OptimalJ: Tutorials 1-19

OptimalJd 3.1

Figure 1-18 Generate Web Model from Domain Model

2. Select order sanpl e. donmai n and click Next.
3. Thewizard displays all packages within application model for the
current project.

1-20 Tutorials

OptimalJd 3.1

Figure 1-19 Generate Web Model from Domain Model

Select or der sanpl e. appl i cati on. web and click Finish. This
generates your Web model from your domain model, creating
component and data schema definitions.

4. In the Explorer [Application Model] view the generated model:

Using OptimalJ: Tutorials 1-21

OptimalJd 3.1

Figure 1-20 Web model

Note: Because the association between Orderline and Salesorder is
defined as composite, the WEB component and WEB data schema for
Salesorder contain the elements for Orderline.

Step 11 ? Generate the code

After completing all modeling activities, you can generate the code for
the application components.

To generate the code:
1. From the menu, choose Model>Generate All Code.

Note: OptimalJ checks the integrity of your models before generating
code.

2. You are prompted to mount a directory where the code for the EJB
module can be generated. The EJB module contains the code that
is executed by the application server.

In the wizard Select Filesystem to generate Code for Module:ejb,
click Mount New Filesystem....

1-22

Tutorials

OptimalJd 3.1

3. In the wizard New Wizard, select Local Directory and click
Next.

4. Browse to\ Opti mal J\ myAppl i cati on, select myAppEj bCode,
and click Finish.

5. In the wizard Select Filesystem to generate Code for Module:ejb,
select the directory
\ Opti mal J\ myAppl i cati on\ nyAppEj bCode and click OK.

6. You are then prompted to mount a directory where the code for the
Web module can be generated. The Web module contains code that
is executed by the Web server.

In the wizard Select Filesystem to generate Code for Module:web,
click Mount New Filesystem..., to mount the directory
\ Opt i mal J\ myAppl i cat i on\ nyAppWebCode.

7. In the wizard New Wizard, select Local Directory and click
Next.

8. Browse to\ Opti mal J\ myAppl i cati on, select ny AppWebCode
and click Finish.

9. Inthe wizard Select Filesystem to generate Code for Module:web,
select the directory
\ Opti mal J\ myAppl i cati on\ nyAppWebCode and click OK.

10. Wait for code generation to complete. The message line in the
main window reports how the generation is progressing. The
Generator tab in the Output Window displays Fi ni shed
generating all code when generation is complete. A database
for code completion is also created. This database is used to auto-
complete the methods you edit, while modifying the generated
code.

11. Examine the results by opening the folders and files in the
Explorer [Code Model] window.

Using OptimalJ: Tutorials 1-23

OptimalJd 3.1

Figure 1-21 Examine the results

Step 12 ? Compile the generated code
After generating code for the application, the code must be compiled.
To compile the code:

1. Choose Project>Compile Project.
2. Wait for the message Finished Project MyFirstProject in Output
Window [Compiler]

Step 13 ? Create tables in the database

Before you can run the application, you must create the database tables.
The DBMS package contains a DBMS metafile and all SQL scripts
needed to drop, create, and initialize tables. In this example, you use a
SOLID database, and the database must be empty.

To create the tables:

1-24

Tutorials

OptimalJd 3.1

1. Startthedefault SOLID database server delivered with OptimalJ,
by executing the SOLID shortcut installed on your desktop. The
database contains sample data for the CRM application. Because
you are using other tables than used by the CRM example, using
this database should give no problem.

2. In the Explorer [Code Model] open
order sanpl e\ appl i cati on\ dbns.

3. Right-click Sol i d_Met aOr der sanpl e. sgqm This file contains
connection data allowing OptimalJ to connect to your database.

4. Choose SQL Workbench in context.

Figure 1-22 Starting the SQL Workbench

The OptimalJ SQL Workbench starts and shows the Connect
window. If you have properly configured your SOLID database

Using OptimalJ: Tutorials 1-25

OptimalJd 3.1

settings, you can accept the default field values and click OK. For
more information, see Setting up a SOLID database.

Figure 1-23 Connect window

5. Click Create in the OptimalJ SQL Workbench window. This loads
the table generation SQL script into the command window. If the
tables already exist, you can load the SQL script to drop the tables
by clicking Drop.

6. Click Exec Batch in the OptimalJ SQL Workbench window. The
<workspace> pane shows the result of the execution of the SQL
commands.

1-26 Tutorials

OptimalJd 3.1

Figure 1-24 Optimald SQL Workbench

7. Close the SQL Workbench (File>Close).

Using OptimalJ: Tutorials 1-27

OptimalJd 3.1

Step 14 ? Start the Application Server

To run the application, you need to start the application server
integrated with OptimalJ.

To start the Application Server:

1.
2.

3.

4.

From the menu, select Test>Start Application Server.
OptimalJ starts JBoss, which is the default EJB Server for the
integrated testing environment.

After JBoss has been started, Tomcat is started. TomCat is the
default Web server for the integrated testing environment.
After Tomcat has been started, OptimalJ starts the default Web
browser, displaying the MainMenu page.

Step 15 ? Test the application
The MainMenu page is the home page of an OptimalJ Web application.

To test the application:

1.

In the MainMenu, click Maintenance Salesorder to display the
query page.

1-28

Tutorials

OptimalJd 3.1

Figure 1-25 Query page

2. In the menu bar, click New to create a new record. The create
Salesorder page appears.

3. Enter Salesorder data in the fields as shown in the following
illustration, but do not click OK yet.

Using OptimalJ: Tutorials 1-29

OptimalJd 3.1

Figure 1-26 Create new Salesorder

Note: The Delete button is disabled, because a new Salesorder is being
created.

4. Click Create to open a new page to create a new Orderline.
5. Enter Orderline data as shown in the following illustration and
click OK.

1-30 Tutorials

OptimalJd 3.1

Figure 1-27 Create new Orderline

6. In the create Salesorder page, the Orderline has been added.

Using OptimalJ: Tutorials 1-31

OptimalJd 3.1

Figure 1-28 Salesorder with Orderline

Click OK to display the browse page.
7. Click Submit to finalize the transaction with the database. The
guery page is displayed.

1-32 Tutorials

OptimalJd 3.1

Figure 1-29 Store page showing your records

8. In the query page, click Browse (with the default %in the
uniqueid field) to display the Salesorder information in the
database.

Figure 1-30 Browse result

9. After you have completed testing, choose Test>Stop Application
Server to stop the application.

10. Stop the Solid database server, which is the DBMS server used in
this tutorial. If you are using your own database, stop the DBMS

Using OptimalJ: Tutorials 1-33

OptimalJd 3.1

server as described in the documentation for your DBMS. (Stop
the Application server first, as it may attempt to access the DBMS
as it shuts down.)

In this tutorial, you performed all the steps needed to create a simple
application. This application allows you to retrieve, create, update, and
delete Sal esor ders and Order | i nes and is fully compliant with the
J2EE architecture. To support the development process, OptimalJ
generated all the code needed for your application components and
provided you with the appropriate tools to deploy and test your
application.

1.2 Creating a new project

In this tutorial, you create a new OptimalJ project to build an
application. An OptimalJ project allows you to distribute all the files of
your project over a file structure that reflects the architecture you want
to apply, for example, a two-tier, or a three-tier architecture. You can add
model packages to refine the structure of the application. A project can
contain several applications. If you want to add an application to your
existing project, you have to mount a file system for the application
manually. You create new projects using the New OptimalJ Project
wizard.

Prerequisites
Nothing required.

Duration
This tutorial takes approximately 15 minutes to complete.

Objectives
In this tutorial, you learn how to create a new project.

Step 1- Prepare the filesystem
Create an empty directory \ Opt i nal J\ MySanpl ePr oj ect\ MyModel .

1-34

Tutorials

OptimalJd 3.1

Step 2 - Set the project name

From the menu bar, select Project>New OptimalJ Project to display
the New OptimalJ Project wizard. The wizard prompts you to enter a
project name. Set the project name to My Sanpl ePr oj ect and click Next.

Step 3 - Select the project name

Each project must have a directory available to hold the project models.
If the directory is not available, you can either create the directory
outside OptimalJ or create it during the directory mounting process. This
tutorial demonstrates the use of directories created outside OptimalJ.
Select New Model , browse to the directory

\ Opt i mal J\ MySanpl ePr oj ect \ MyModel using the browse button, and
click Next.

The Select the Type of Project pane shows three options for the project
type:

< New model?you create a new model for your application.

< Mount existing model?you want to base your application on an
existing model.

= Experiment with one or more example models?choose this option if
you want to experiment with a CRM Example Application that
OptimalJ provides.

Step 4 - Create a file structure

The design of your application requires an initial structure, for example
a two-tier, or a three-tier architecture. In this tutorial, accept the default
architecture, which is a three-tier structure with integration. You can
provide a qualified package name to the initial structure. Accept the
default com conpuwar e. nysanpl epr oj ect in the Enter Fully
Qualified Package Name and Properties pane, and click Next.

Note: The wizard pane also shows a field Sub Model Nane. If you use
model packages with equal top model package names, you need to qualify
the model packages by a unique sub model name. See Model package
structure for the details.

Using OptimalJ: Tutorials 1-35

OptimalJd 3.1

Step 5 - Set the automount settings

When you generate code from your models, OptimalJ needs mounted file
systems to store the code. OptimalJ uses Mount points to address these
systems. For a two-tier architecture, OptimalJ needs a single mount
point to store the Web code. A three-tier model requires a mount point for
the code generated from the Web model and a mount point for the code
generated from the EJB model. In the Automount Settings pane you can
choose to define these mount points yourself (default), or choose a base
directory under which Optimal generates the mount points
automatically. Accept the default Mount each fil esystemyoursel f
and click Next.

Step 6 - Select framework sources

The Include Source Code and Archives pane asks you to mount the
archiveal tural i b-src. zi p. The archive contains the Java source files
of the OptimalJ framework. The archive is provided for instructional
reasons. Accept the default option and click Finish. In the Explorer[Code
Model] you can view the code model.

1-36

Tutorials

OptimalJd 3.1

Figure 1-31 Code model of a newly created Project

In this tutorial you created a new project for a new application. You
mounted a local directory to hold the project models. You defined the
mount points for the generated code. You can now start to build your
application in the domain model, update your models and generate the
code. The tutorial Developing your first OptimalJ application
demonstrates how you can take these steps.

Using OptimalJ: Tutorials 1-37

OptimalJd 3.1

Further reading

For more information, see also OptimalJ Project and other
documentation topics on OptimalJ environment and directories.

1.3 Setting up a SOLID database

This tutorial guides you through the process of setting up a new SOLID
database. Some of the tutorials included in the OptimalJ online help
require you to create a new empty SOLID database.

A SOLID database server serves only one database at a time. The
database being served is defined by a folder which is specified in the
SOLID shortcut property called Start in: (Microsoft Windows). When
the SOLID server is started, it uses the database located in that folder.
By default, the database is in a file called sol i d. db. If, when the SOLID
server is started, there is no database in the folder the server creates a
new sol i d. db database.

An OptimalJ installation includes a pre-configured SOLID 4.0 server and
a default database. The database contains the CRM database schema
initialized with data. The CRM database is located in the folder
Optimal JInstal l ati on\ Solid_db.

Prerequisites
« Familiarity with databases.

Duration
This tutorial takes approximately 30 minutes to complete.

Objectives
This tutorial describes how to:

1-38

Tutorials

OptimalJd 3.1

= Create a new SOLID database for Windows (step 1) and Linux (step
2).
« Confirm OptimalJ's settings for SOLID (step 3).

Note: On Windows operating systems, follow the steps 1 and 3. On Linux
operating systems, follow the steps 2 and 3.

Step 1 - Create a new SOLID database (Windows)

1. Inyour file system, create a new folder for your SOLID database,
for example,
Optinal JInstal |l ati on\ Sol i dFol der.
Do not use the folder Opti mal JI nstal | ati on\ Sol i d_db
because it contains the default CRM database.

2. Copy the SOLID license file sol i d. | i ¢ from
Optimal JI nstal |l ati on\ Sol i d_db to the newly created
Optimal JI nstal |l ati on\ Sol i dFol der.

3. Right-click the Solid for OptimalJ shortcut on the desktop and
select Properties from the pop-up menu to display the properties
dialog. Then select the Shortcut tab.

Using OptimalJ: Tutorials 1-39

OptimalJd 3.1

Figure 1-32 Shortcut properties

In the Start in: field, enter the path to the folder you created in
Step 1, for example,

Optimal JI nstal |l ati on\ Sol i dFol der. This is the location
where the database is created.

. Click OK, then close the dialog.
. As the folder Sol i dFol der is newly created and does not contain

asolid. db file, the SOLID server creates a new database when
it starts. Double-click the Solid for OptimalJ shortcut to start the
SOLID server.

In the Creating a new database dialog, create a new database
using the listed properties, then click OK.

1-40

Tutorials

OptimalJd 3.1

Table 1-1 SOLID database properties

Property Value

System catalog opti mal j
Username opti mal j
Password opti mal |

Figure 1-33 Creating a new database

Note: The string opti nal j is a default value which reflects the default
settings within OptimalJ. If you wish to use different values for the above
properties you would have to change the same properties within
Optimald.

Note: The database created uses the default name solid and the default
port 1313. If you are running another database concurrently using the
same name on the same port, or if the port 1313 is already in use, you need
to modify the sol i d. i ni file to change the name and the port settings. A
default sol i d. i ni fileis located in the

Optimal JInstal |l ati on\ Sol i d_db folder. Copy the default

sol i d.ini filetoyour Solid startup directory, for example

Opti mal JI nstal |l ati on\ Sol i dFol der, and modify it to accommodate
your environment. If you configure Solid to use a port other than 1313, you
must configure OptimalJ to use your selected port. See Configuring
databases for more information.

8. To start the SOLID server, double-click the Solid for OptimalJ
shortcut on your desktop.

Using OptimalJ: Tutorials

1-41

OptimalJd 3.1

9.

To stop the SOLID server, right-click the Solid FlowEngine
program icon on the Microsoft Windows task bar and choose Close
from the pop-up menu.

Step 2 - Create a new SOLID database (Linux)

1.

In your file system, create a new folder for your SOLID database,
for example:

Optinal JInstal |l ation/ Sol i dFol der.

Do not use the folder Opti mal JI nstal | ati on/ Sol i d_db
because it contains the default CRM database.

Copy the SOLID license file sol i d. | i ¢ from

Optimal JInstal l ation/ Solid4.0/eval _kit/standal one
to the new Opt i mal JI nst al | ati on/ Sol i dFol der location.
The easiest way to create a new SOLID database is first to make
your own copy of the file:

Optimal JInstal |l ati on/ Sol i d4. 0/

st andal one_eval _server_start

intheOpti mal JInstal |l ati on/ Sol i dFol der directory, calling
the file something like MySol i d_server _start.

Before you edit this file, change the file's permissions with the
command:

chnod 711 M/Sol i d_server_start

5.

Edit the MySol i d_server _start file with the command:

vi MSolid server_start

6.

7.
1]
2|
3]
4|
5]
6|

Replace the path eval _ki t/ st andal one by the path to your
directory, for example Sol i dFol der . There are seven (7)
occurrences that need to be replaced.
Locate the following lines in the MySol i d_server _start file:
locate the executabl es directory

cd ./bin

bi npat h="pwd"

cd ..

rootbytes= pwd | we -c’

bi ndi r="echo $binpath | cut -c $rootbytes- | cut -c 2-°
Edit the relative paths in the two cd commands so the paths
access the Opti mal JI nstal | ati on/ Sol i d4. 0/ bi n directory

from the Opt i mal JI nst al | ati on directory. The resulting paths
are:

1-42

Tutorials

OptimalJd 3.1

1| # locate the executabl es directory

2| cd ./Solid4. O/bin

3| binpath="pwd

4| cd../..

5| roothytes=pwd | we -c

6| bindir="echo $hinpath | cut -c $rootbytes- | cut -c 2-°

8. Save and exit your script (Esc : wg).

9. You create a new SOLID database by starting the server without

an existing database. Execute your script from the
Opt i mal JI nstal | ati on with the command:

Sol i dFol der/ MySol i d_server_start

Note: Because of the relative paths in the MySol i d_server _start file,
you must always start the database from the Opt i mal JI nstal | ati on.

10. As the folder Sol i dFol der is newly created and does not contain
asol i d. db file, the SOLID engine asks you if you want to create
a new database.
Answer YES to create a new database using the following
properties:

Using OptimalJ: Tutorials 1-43

OptimalJd 3.1

Table 1-2 SOLID database properties

Property Value

System catalog optimalj
Username optimalj
Password optimalj

Figure 1-34 Creating a new database

Note: The string opti mal j is a default value which reflects the default
settings within OptimalJ. If you wish to use different values for the above
properties you would have to change the same properties within
Optimald.

Caution: Although the sample st andal one_eval _server_start and
st andal one_eval _server _st op scripts seem to indicate a port setting
of 1315, Solid uses a default port of 1313.

1-44 Tutorials

OptimalJd 3.1

Note: If you are running another database concurrently using the same
name on the same port, or if the port 1313 is already in use, you need to
modify the sol i d. i ni file with appropriate name and the port settings.
A default sol i d. i ni fileis located in the

Optimal JI nstal |l ati on\ Sol i d4. 0\ eval _ki t\ st andal one folder.
Copy the default sol i d. i ni file to your Solid startup directory, for
example Opt i mal JI nstal | ati on\ Sol i dFol der, and modify it to
accommodate your environment. If you configure Solid to use a port other
than 1313, you must configure OptimalJ to use your selected port. See
Configuring databases for more information.

11.To start the SOLID server at any time, use Step 2.9. As the
Sol i dFol der is not empty the server automatically starts with
your new database.

12.To provide a stop facility first copy the file:
Optimal JInstal |l ation/ Sol i d4. 0/
st andal one_eval _server_stop
into the Sol i dFol der directory, calling the file something like
MySol i d_server _st op.

13. Edit the MySol i d_ser ver _st op file with the command:

vi MSolid server_stop

14. Replace the path eval _ki t/ st andal one by the path to your
directory, for example Sol i dFol der . There is one (1) occurrence
that needs to be replaced.

15. Locate the following lines in the MySol i d_ser ver _st op file:

1| # locate the executabl es directory

2| cd./bin
3| binpath="pwd
4| cd..

5| roothytes=pwd | we -¢

6| bindir="echo $hinpath | cut -c $rootbytes- | cut -c 2-°
Edit the relative paths in the two cd commands so the paths
access the Opti mal JI nstal | ati on/ Sol i d4. 0/ bi n directory
from your Opt i mal JI nst al | ati on directory. The resulting
paths are:

1| # locate the executabl es directory

2| cd./Solid4.0/bin

3| binpath="pwd

Using OptimalJ: Tutorials

1-45

OptimalJd 3.1

4| cd../..

5] rootbytes=pwd | we -c’

6| bindir="echo $hinpath | cut -c $rootbytes- | cut -c 2-°

16. Set the port number to shutdown. Replace the sample port
number of 1315 with the default port number of 1313 or the port
number you have set to match your environment. There are three
(3) occurrences that need to be replaced.

17. Save and exit your script (Esc : wqg).

18. To stop the SOLID server, execute your script from the
Opt i mal JI nst al | ati on with the command:

Sol i dFol der/ M/Sol i d_ser ver _st op

Note: Because of the relative paths in the MySol i d_ser ver _st op file,
you must always stop the database from the Opt i mal JI nstal | ati on.

Step 3 - Confirm OptimalJ settings for SOLID

You can confirm the SOLID settings within OptimalJ by doing the
following:

1. In Optimal], click Tools>Optionson the menu to open the
Options window.

2. Navigate to Opti nal J Confi gurati on. Code
Gener at i on. Dat abases and select Sol i d.

1-46 Tutorials

OptimalJd 3.1

Figure 1-35 Options for database configuration

Look at the Database Driver property. You can see that the JDBC
driver needed for SOLID is set up when OptimalJd is installed.

The User name and User password properties are set to the
default setting of opti mal j .

Note: The User name and User password properties may be changed but
then the Username and Password properties of SOLID must be changed

to the same values. See Step 1.6.

3. Still in the Options window, select Opt i nal J
Configuration. Testi ng. Dat abase Confi gurati on.

Using OptimalJ: Tutorials 1-47

OptimalJd 3.1

Figure 1-36 Options for Testing Environment

4. Check that the Deployment Database is set to Sol i d.
5. Close the Options window.

You have created a new SOLID database and confirmed OptimalJ's
settings to use it. You can now create and access tables in this database
from OptimalJd by running scripts that are generated for an OptimalJ
application.

1-48 Tutorials

OptimalJd 3.1

If you need to recreate the CRM database tables and populate them, the
filecrm sql is available in Opti mal JI nstal |l ati on\ Sol i d_db to do
so0. You first need to drop the database tables using the SQL workbench,
then you can use this file, by modifying your Solid shortcut (or script)
with the extension: - x execute:crm sql .

Note: Be careful when using table creation scripts. If you try to perform
the same step-by-step instructions several times, you will likely attempt to
create tables that already exist, which results in an error. If the tables
already exist, you do not have to recreate them unless you want to start
with an empty table. In this case, use the application's drop script to drop
the tables, then the create script to recreate the tables.

1.4 Importing a domain class model

In this tutorial, you generate an OptimalJ application from a UML
model. The model is delivered with OptimalJ, in the Opti nal J
installation directory\docs\tutorial folder.

You import the model into OptimalJ with the Import facility for UML/
XMI. The UML import facility of OptimalJ allows you to import models
exported from:

= Rational Rose 2002

« Borland Together 6.1

= Enterprise Architect 3.51
« Objecteering 5.2.1

Also, import can be from a file containing a UML model. In this case, you
must specify an additional XSLT file containing the transformation to be
used.

Prerequisites

= You must be familiar with the basic development features of
OptimalJ.

 You must be familiar with UML.

Using OptimalJ: Tutorials

1-49

OptimalJd 3.1

Duration
This tutorial takes approximately one hour to complete.

Objectives

In this tutorial you learn how to import a domain class model from a
UML model.

Step 1 - Prepare the file system
In your file system, create the following directories:

e \Optimal J\inport UM.\ um Model ?this directory holds the model
definitions.

e \Optimal J\inport UM\ um Ej bCode?this directory contains the
EJB application code.

e \Optimal J\inport UM\ um WebCode?this directory contains the
Web application code.

Step 2 - Create a new project

1. On the menu, select Project>New OptimalJ Project. Enter
| mpor t UML as the project name and click Next.

2. Select the type of project. Select New Model and set the Model
dir to\ Opti mal J\'i mport UML\ um Model . Click Next.

3. Create a package structure. Enter nycr min the Fully-qualified
Package Name field. Set the initial package structure to Thr ee
Ti er Application Package and click Next.

4. In the automount settings pane, select Mount each filesystem
yourself and click Next.

5. Click Finish.

6. In the Explorer [Domain Model], expand nycr mto see the nodes
in the domain package.

Step 3 - Import a UML model
You now import a UML model into the domain class package.
To import a UML model:

1. On the menu, choose Model>Import Model>Import Domain
Class from UML.

2. Click the browse button and select the file cr m xm located in the
Optimal J install directory\docs\tutorial folder and
click Next.

1-50

Tutorials

OptimalJd 3.1

3. Select mycr m dorai n. cl ass as the target package and click
Next.

4. Select New import pattern and enter nycr nPat t er n as the
pattern name. Click Next.

5. Click Finish.

6. In the Explorer [Domain Model], expand the
nycr m domai n. cl ass node to check that the UML model is
imported into the domain class model.

Notice the mycr nPat t er n node that contains the mapping
between the names of the elements in the UML file and the unique
identifiers of the elements in the domain class model.

7. To display the class diagram for this domain, right-click
nmycr m domai n. cl ass, and choose Show Domain Class
Diagram from the pop-up menu. You can change the layout of the
diagram by dragging the classes to new positions.

Figure 1-37 Domain class diagram

Using OptimalJ: Tutorials 1-51

OptimalJd 3.1

You imported a model that contains three classes and two associations.
Notice that at this stage there is no domain unique constraint in the
classes. You are now going to generate an application from this model.

Step 4 - Generate all application models

You can now generate all application models to create the DBMS, EJB
and Web models.

To generate all models:

1. On the menu, choose Model>Update All Models.

2. Select mycr mand click Finish.

3. In the Explorer [Application Model], expand the node
nmycrm appl i cati on. dbnms. nycrm Cal | to see that an unique
key uni quel d has been added as the primary key.

Step 5 - Generate and compile all code

When you have completed modeling, you generate and compile the code
for the application.

To generate and compile the code:

1. On the menu, choose Model>Generate All Code.

2. When prompted for a directory for the Ejb code, click Mount New
Filesystem.

3. Click Local Directory and click Next.

4. Browse to\ Opti mal J\i nport UML\ um Ej bCode and click
Finish.

5. Click OK to start the Ejb code generation.
Wait for the generation process to complete before continuing.

6. When prompted for a directory for the Web code, click Mount
New Filesystem.

7. Click Local Directory and click Next.

8. Browse to\ Opti mal J\i nport UM\ um WebCode and click
Finish.

9. Click OK to start the Web code generation.
Wait for the generation process to complete before continuing.

10. On the menu, choose Project>Compile Project.

1-52

Tutorials

OptimalJd 3.1

Step 6 - Create the database tables

Because this tutorial is based on an import file in which the database
structure is slightly different from the default CRM application, you need
to create new database tables to test the application.

1. Start the SOLID server by double-clicking the Solid 4.0 icon on
your desktop.

2. In the Explorer [Code Model], expand

urm Model . mycrm appl i cati on. dbns.

Double-click Sol i d_Met aMycrm sgm

In the Connection window, click OK.

5. Click Create to load the SQL script for creating the database
tables, then Exec Batch.

6. Close the SQL workbench.

o

Step 7 - Test the application

To test the application, you start the database server and application
Sservers.

To test the application:

1. From the menu, select Test>Start Application Server to start
the EJB and Web servers. Your CRM application starts
automatically in your Web browser.

2. Proceed with testing the application.

In this tutorial, you generated an application from imported UML
definitions containing multiple classes and attributes, as well as multiple
associations. The UML import facility of OptimalJ allows you to import
models created with Rational Rose 2002 or files created with the export
to UML feature of OptimalJ. The maintenance pattern provides you with
the functionality needed to retrieve, create, update and delete service
agreements, customers, and calls, as well as the ability to associate a
service agreement with a customer.

Further reading

For more information see also Importing a class model and Elements
common to UML and domain class model.

Using OptimalJ: Tutorials 1-53

OptimalJd 3.1

1.5 Generating a domain model from database definitions

In this tutorial, you generate an application by importing database
definitions. You use the CRM database which is made available as part
of a OptimalJ installation. You import the definitions of this database in
OptimalJd and use these definitions to generate a domain model. This
approach simulates building an application starting from a legacy
situation.

Prerequisites

= You must be familiar with the basic development features of
OptimalJ, including the domain model.

< You must be familiar with databases.

Duration
This tutorial takes approximately one hour to complete.

Objectives

The focus of this tutorial is to read database definitions to generate an
application. To simulate a legacy situation, you use the CRM database.
You load a table definition from the database into an OptimalJ DBMS
model via the JDBC driver, then you create a domain model from the
DBMS and, finally generate and execute the application.

Step 1 - Prepare the filesystem
In your file system, create the following directories:

e \Optimal J\inport DBMS\ i nport DBMSModel ?this directory holds
your model definitions.

e \OptimaJ\inportDBWMS\ i nport DBMBE] bCode?this directory
contains the Ejb application code.

e \Optimal J\inportDBMS\ i nport DBMBWebCode?this directory
contains the Web application code.

Step 2 - Create a new project

1. From the menu, choose Project>New OptimalJ Project. Set
the project name to | npor t Dat abase and click Next.

1-54

Tutorials

4.

5.

OptimalJd 3.1

Select the type of project. Select New Model and set the Model
dir to\ Opti mal J\'i npor t DBVB\ i npor t DBMSMbdel . Click
Open and then Next.

Create a package structure. Enter mycr min the Fully-qualified
Package Name field. Select Three Ti er Application
Package as the initial package structure and click Next.

Select Mount each filesystem yourself for the mount point
settings and click Next.

Click Finish.

Figure 1-38 mycrm domain package

Step 3 - Import database definitions
In this step you import the CUSTOMER table of the CRM database

schema.
1. Start the SOLID server by double-clicking the Solid 4.0 icon on
your desktop.
2. From the menu, select Model>Import Model>Import DBMS
from JDBC Driver.
3. Click Test to test the connection with the database. If the test is

successful, the Next button becomes available.

Using OptimalJ: Tutorials

1-55

OptimalJd 3.1

Figure 1-39 Import DBMS from JDBC Driver€onnection properties

4. Click Next.

Note: If, after clicking the Test button, the Next button remains
unavailable, verify the database URL (check the port number), driver
(database specific), username and password (correct ones) and that the
SOLID server is started.

5. Click Deselect All.
6. Select the CUSTOMER base table.

1-56 Tutorials

OptimalJd 3.1

Figure 1-40 Import database definitions8elect table

7. Once CRM.CUSTOMER is selected, click Next.

8. Selectmycr m appl i cati on. dbns as the model package in which
to import the database definitions.

9. Click Finish.

In the output window you can see the progress. When finished the
message 'Finished Importing Database Definitions' appears under
the menu.

10. In the Explorer [Application Model], expand the nodes
mycr m appl i cati on. dbrs to check the imported definitions.

Using OptimalJ: Tutorials 1-57

OptimalJd 3.1

Figure 1-41 Application model generated from the CRM database schema

11. Check that the database model is correct. From the menu, select
Model>Check>Check DBMS Model.

Step 4 - Generate the domain and application models

After the database definitions have been imported, you can generate the
domain model from the DBMS model and then, from the domain model,
generate the application models such as the EJB and WEB application
models.

1. From the menu, select Model>Generate Model>Generate
Domain Models>Generate Domain from DBMS.

2. Select mycrm appl i cati on. dbns and click Next.

3. Select mycr m domai n. cl ass and click Next.

4. Leave all the model copier options unchecked and click Finish to
generate the domain model from the database definitions.
Wait until the message Finished Incremental Generation of
Domain from Database appears under the menu.

5. Now, you need to generate the application model.
From the menu, select Model>Generate Model>Generate
Application Models>Generate EJB from Domain to generate
the EJB model.

6. Select mycr m domai n and click Next.
Select nycr m appl i cati on. ej b and click Next.
Leave the model copier options unchecked and click Finish.

1-58 Tutorials

7.

OptimalJd 3.1

From the menu, select Model>Generate Model>Generate
Application Models>Generate WEB (EJB based) from

Domain to generate the Web model.

Select nycr m donai n and click Next.

Select nycr m appl i cati on. web and click Next.

Leave the model copier options unchecked and click Finish.

Step 5 - Generate and compile the code

After completing all modeling activities, you can generate and compile
the code for the application components.

To generate and compile the code:

1.
2.

w

10.

11.

From the menu, click Model>Generate All Code.

When prompted for a directory in which to generate the Ejb code,
click Mount New Filesystem.

Select Local Directory and click Next.

Browse to \ Opti mal J\'i mport DBMS\ i npor t DBMSEj bCode and
click Finish.

Click OK to start the code generation.

When prompted for a directory in which to generate the Web code,
click Mount New Filesystem.

Select Local Directory and click Next.

Browse to \ Opt i mal J\'i mport DBVMS\ i npor t DBMSWebCode and
click Finish.

Click OK to start the code generation.

In the Explorer [Code Model], expand the nodes

nmycrm appl i cati on. dbns to check what has been generated.
From the menu, select Project>Compile Project.

The message line in the main window shows the progress. It
displays Finished application when compilation is complete.

Step 6 - Test your application

1.

2.

w

If the SOLID server is not running, start the SOLID server by
double-clicking the Solid 4.0 icon on your desktop.

From the menu, select Test>Start Application Server to start
the EJB and Web servers.

Your application is automatically started in your Web browser.
Click Maintenance Customer.

Click Browse.

Using OptimalJ: Tutorials

1-59

OptimalJd 3.1

Figure 1-42 Accessing customer data

5. You can test the application by entering data or modifying and
browsing through customer data.

In this tutorial, you used a database table to simulate a legacy situation.
You imported the database definitions into the DBMS model. After that
you generated the domain model from the DBMS model and then
generated the other application models from the domain model. This
reverse engineering approach allowed you to develop a three-tier
application from a legacy situation. The result is a J2EE compliant
application.

Further reading
For more information see also Importing a domain model.

1-60 Tutorials

OptimalJd 3.1

1.6 Creating and distributing domain patterns

Domain patterns accelerate the process of creating a domain model by
enabling you to capture and distribute domain models. In this tutorial,
you create a domain pattern inside a domain pattern library that
describes the Order and Orderline domain classes (defined as a
composite association) a construct frequently used in business
applications. You then create a domain pattern module to distribute this
library. Finally, you install this domain pattern module in a new
OptimalJ project and apply the domain pattern to a class model.

Prerequisites

You must be familiar with the basic development and testing features of
OptimalJ. For more information, see the tutorial Developing your first
OptimalJ application

Duration
This tutorial takes approximately one hour to complete.

Objectives

In this tutorial you learn how to create, install and distribute domain
patterns.

Step 1 - Create a new project
Create a new project and mount a directory.
To create a new project:

1. Create a new folder structure on a local file system called
Opt i mal J\ nyDomai nPat t er n.

2. On the menu, select Project>New OptimalJ Project. Set the
project name to nyDomai nPat t er n and click Next.

3. Set the type of project to New Model and click the browse button.
Select Opt i nal J\ myDomai nPat t er n and click Open. Click
Next.

4. Accept the defaults for the fully-qualified package name and sub
model name and set initial structuretono i nitial structure.
Click Next.

5. Accept the defaults for the automount settings and click Next.

6. Click Finish.

Using OptimalJ: Tutorials

1-61

OptimalJd 3.1

Step 2 - Create a domain pattern library

Create a domain pattern library in which you define your domain
pattern. A domain pattern library is a placeholder for domain patterns.

1.

2.

10.

In the Explorer [Domain Model], right-click the Domain node and
select New DomainPatternLibrary.

Enter nypat t er ns as the name for the library and click Finish.
The domain pattern library is added directly under the Domain
node.

Right-click the domain pattern library and select New
Child>ModelPackage.

In the Name field, enter or der or der | i ne, set the Content
Filter to domnei n and click Finish.

Right-click the newly created (domain) model package and repeat
the step 5 to create a model package with the name cl ass and
click Finish.

In the Properties window, set the contentFilter to cl ass.

In the menu, select Model>Import Model>Import Domain
Class from UML.

Click the browse button and browsetoOpt i mal J i nstal | ati on
di rectory\docs\tutorial and select the file

ordordl i ne. xm and click Open, then Next.

Browse to mypat t er ns. order orderli ne. cl ass and click
Next.

Select New import pattern and enter the name
importOrderlinePattern. Click Finish.

View the result in the Explorer [Domain Model]:

1-62

Tutorials

OptimalJd 3.1

Figure 1-43 Creating a domain pattern library.

Note: You can also manually create domain patterns in the same way as
creating a regular domain model, that is by manually adding classes,
associations, and other domain model elements to the domain pattern.

Step 3 - Create a domain pattern module

The domain pattern module allows you to distribute your domain
patterns to other developers in a project.

To create the domain pattern module:

1.

2.
3.

4,

In the Explorer [Domain Model], right-click the Domain node and
select New DomainPatternModule.

In the Name field, enter pat t er ndi st ri b and click Finish.
Select patterndistrib to display its properties in the Properties
window.

Click the browse button of the library property to display the
Property Editor. Click Add to add domain pattern libraries to the
domain pattern module. Select mypatterns and click OK twice.

Note: Domain pattern modules can reference several domain pattern
libraries.

5.

6.

In the Explorer [Code Model] open the patterndistrib
package.

Right-click the pat t er ndi stri b folder and choose Compile All
in the pop-up menu to create the installable domain pattern
module:

Using OptimalJ: Tutorials

1-63

OptimalJd 3.1

Figure 1-44 Creating a domain pattern module

The patterndi strib. jar contains your installable domain
pattern library available for distribution. The following steps
demonstrate how you can install a domain pattern module.

Step 4 - Prepare the filesystem

Create a new directory structure to hold the model and code for a new
application that will make use of the domain pattern you created in the
previous steps. For example:

\ Opt i mal J\ donmi nPat t er ns and under\ dormai nPat t er ns create the
subdirectories \ dpModel , dpEj bCode and \ dpWebCode to hold
respectively your model definitions, EJB code, and Web code in separate
subdirectories.

Step 5 - Create a new project

Create a new project, mount the directory you created above and create
a default model package structure. (this step is required to simulate
distributing the domain pattern to another developer.)

To create a new project:

1. On the menu, select Project>New OptimalJ Project. Set the
project name to Donmai nPat t er ns and click Next.

2. Set the type of project to New Mbdel and click the browse button
and select the directory to mount
\ Opt i mal J\ domai nPat t er ns\ dpMbdel and click Open. Click
Next.

1-64 Tutorials

OptimalJd 3.1

3. Accept the defaults for the fully-qualified package name, sub
model name and initial structure and click Next.

4. Accept the defaults for the automount settings and click Next.

5. Click Finish.

Step 6 - Install a domain pattern module

You can install a domain pattern module in OptimalJ making its pattern
libraries available in your environment.

To install the domain pattern module:

1. On the menu, select Tools>Options to display the Options
window. Browse to IDE Configuration>System. Right-click the
Modules node and select Add>Module.

2. Browse to the local directory containing patterndi strib. jar,
select this file and click Install to install the domain pattern
module in your environment.

Note: You can view the installed module in IDE
Configuration>System>Modules>Compuware Domain Pattern
Modules.

3. Close the Options window. The result in the Explorer appears as
shown in the example, and the message Tur ni ng on
nodul es. .. done is displayed.

Using OptimalJ: Tutorials

1-65

OptimalJd 3.1

Figure 1-45 Installing a domain pattern module

Note: The JAR file is extracted to your user directory and mounted
automatically by OptimalJ which makes the libraries available to the
environment.

In this step, you installed a domain pattern module, in your environment
allowing you to develop applications based on distributed domain
patterns. This facility allows you to capture best practices in domain
patterns and to distribute your models to other developers.

Step 7 - Create a domain model from domain pattern definitions

When you have installed a domain pattern module in your environment,
you can use the domain patterns it contains to create new domain
models. Or, you can apply domain patterns to existing domain models
(weaving). This step describes the creation of a new domain model from
a domain pattern.

To create a domain model from domain pattern definitions:

1. On the menu, choose Model>Apply Domain Pattern.

2. Select the pattern. Browse to
nypatt erns. orderorderline. cl ass and click Next.

3. Select the target. Browse to
com conpuwar e. donai npat t erns. donai n. cl ass and click
Next.

1-66

Tutorials

OptimalJd 3.1

4. Click Finish in the wizard to create all the model elements
contained in the domain pattern in the target class model.

Note: The Apply Domain Pattern wizard provides options on how you can
combine the domain pattern with the target (class model) by specifying the
Type of Weaving. By default, the type of weaving is set to create for each
model element (you can specify type of weaving for each model element):

Figure 1-46 Applying a domain pattern

Note: The Copy onto option is not available because the target model is
currently empty, therefore you can only create or ignore elements (for each

model element).

5. View the result in the Explorer [Domain Model]:

Using OptimalJ: Tutorials 1-67

OptimalJd 3.1

Figure 1-47 Creating a domain model based on domain pattern definitions

In this step, you used an installed domain pattern module to create a new
class model based on predefined definitions.

In the type of weaving panel of the Apply Domain Pattern wizard, the
Disconnected application check box allows you to cut the link between
the pattern and the model, with the consequence that if you update the
pattern you cannot update the target. For more information, see the next
step. The Override regenerate properties check box allows override
the settings in the regenerate property in the target (the regenerate
property for model elements determines the behavior of the incremental

copier).

Step 8 - Update patterns

When you apply a pattern in connected mode (the Disconnected
application is check box is not selected), you can modify the way domain
patterns are combined with their targets.

To use the update pattern menu:

1. In the Explorer [Domain Model], expand the node
com comnpuwar e. donmi npat t er ns. donai n. cl ass, right-click
the weave root called class and select Update Pattern in the pop—.
up menu to display the Update Pattern wizard.

1-68 Tutorials

2.

OptimalJd 3.1

Expand the Salesorder node and select the attribute total. Select
Ignore as the Type of weaving.

Figure 1-48 Update Pattern

w

Repeat step 2 for the attribute status. Click Finish.

Expand the class Salesorder to verify that the update pattern
removed the two attributes total and status from the target model.
Optionally, generate the application models, generate and compile
the code and test your application as described in steps 9 and 10.

Step 9 - Update all model and generate and compile the code

Update your application models with the definitions in your domain
model. You can then generate code for the application models. Each
model creates a number of files (Java, JSP, XML) from the model
definitions.

1.

2.
3.

Choose Model>Update All Models, select the root model
package com compuwar e. domai npat t er ns, and click Finish.
On the menu, select Model>Generate All Code.

When prompted, you need to mount the directories for the Web
and EJB code:

Select Opt i nal J\ donai nPat t er ns\ dpEj bCode and click OK.
Select \ Opt i mal J\ dorai nPat t er ns\ dpWebCode and click OK.
On menu, choose Project>Compile Project.

Using OptimalJ: Tutorials

1-69

OptimalJd 3.1

Step 10 - Test the application

To test the application, you need to start the database and the
application server.

To test the application:

1. Start the SOLID server by double-clicking the Solid 4.0 icon on
your desktop. You have to run the database scripts as described in
Setting up a SOLID database.

2. Onthe menu, select Test>Start Application Server to start the
EJB and Web servers.

3. Proceed with testing the application as described in the tutorial
Your first OptimalJ application.

In this tutorial, you created a domain pattern library to hold the
definitions of your domain patterns. You then created a domain pattern
from a UML/XMI import file (although you can create a domain pattern
manually). You then created a domain pattern module with which you
distributed your domain pattern. After installing the module in a new
environment, you were able to develop a domain model from a pattern
and to generate an application from it.

The Update Pattern menu provided you with the ability to modify the
weaving of the pattern after you applied it.

Further reading

For more information on domain patterns, libraries, modules, and
weaving, see the Using OptimalJ documentation.

1.7 Defining a domain service model

This tutorial shows you how to create a domain service model and how to
generate the application model and code from this model. The service
model allows you to define behavioral information. The main elements of
the service model are domain services. Domain services contain service
attributes, operations, and domain views. From the service model, you
generate EJB session components in the EJB model and Web
components in the Web model. At code level, this results in the

1-70

Tutorials

OptimalJd 3.1

generation of session beans, JavaServer Pages, and other related code.
Service operations become business methods on the session bean and
Web actions. This tutorial uses the CRM example as the basis for which
you develop a domain service. The domain service provides a domain
view for ServiceAgreement, Customer, and Call.

Prerequisites
You must be familiar with the basic development features of OptimalJ.

Duration
This tutorial takes approximately a half-hour to complete.

Objectives

The focus of this tutorial is on creating a domain service that provides a
domain view, and on generating the application model and the code
based on the service model. For this purpose, you need a class model
(imported from a UML/XMI file).

Step 1 ? Prepare the file system

Create a new directory for the example application; for example:
\ Opt i mal J\ domai nSer vi ce.

This directory will hold your model definitions, EJB, and Web code in
separate subdirectories.

Step 2 ? Create a new project containing the CRM example

The CRM example is a sample application delivered with OptimalJ the
demonstrates features and functionality available in OptimalJ. You can
use the domain model of this application as a starting point for this
tutorial.

To create a new project based on CRM:

1. From the menu, choose Project>New OptimalJ Project. Enter
domai nSer vi ce as the Name and click Next.

2. Set the type of project to Experiment with one or more
example Models. Set the Unpack dir to
\ Opt i mal J\ donmi nSer vi ce (the directory you defined in Step 1)
and click Next.

3. Select the CRM Example (Sample domain model) check box
and click Next.

Using OptimalJ: Tutorials

1-71

OptimalJd 3.1

4. Click Finish.

The result in the Explorer [Domain Model] appears as shown in
the example.

Figure 1-49 Explorer window

5. Right-click the class node and select Show Domain Class
Diagram to display the class diagram for this domain.

1-72 Tutorials

OptimalJd 3.1

Figure 1-50 CRM class diagram

Note: Attributes and unique constraints are hidden on this diagram.

The class model contains three classes and two associations. Call is in a
composite association with Customer, so call data is only accessible via
Customer. The association between Customer and ServiceAgreement is
mandatory?every Customer must have a ServiceAgreement.

The default application that can generated by this class model enables
the end-user to display and maintain the data via two components?one
for maintaining ServiceAgreements, and another for maintaining
Customers and Calls. As a result of the composite association, the only
way to create a Call is to create or edit a Customer. You cannot create a
Customer without associating it with a ServiceAgreement. If no
ServiceAgreements have been defined, it is not possible to create a
Customer.

By defining a domain service, you can extend the basic functionality so
that users can maintain both ServiceAgreements and Customers from
one component.

Using OptimalJ: Tutorials

1-73

OptimalJd 3.1

Step 3 ? Create a domain service

You are going to create a domain service providing a view of
ServiceAgreement, Customer, and Call. This domain service can then be
used to generate the EJB and Web components required to maintain
ServiceAgreement and Customer from one place.

1. Inthe Explorer [Domain Model], right-click the service model and
choose New Child>DomainService to display the Create
Domain Service wizard.

2. Setthe Domain Service Type to Define new View on Domain
Class and click Next.

Note: The option Do not Define View on Domain Class is used to
create purely behavioral domain services.

3. Select crm donmi n. cl ass. Servi ceAgr eenent as the root
class on which to base the domain view. Click Next.
4. Do not change the default reference and click Next.

1-74 Tutorials

OptimalJd 3.1

Figure 1-51 Setting the by value property for the reference view

5.

The way a component uses an association is expressed as one of
the following:

by val ue?data of the associated class is included in the view
by reference?only primary keys are included.

This setting enables the Customer data to be included in the view
of Service Agreement root class. Call is also included because it is
a composite part of an association with Customer, which is
included in the view by value. Therefore, creating a view that
includes Customer (by value), also automatically provides Call
data.

Accept the suggested value Ser vi ceAgr eenent Domai nVi ewin
the Name field and click Next.

Using OptimalJ: Tutorials

1-75

OptimalJd 3.1

6. Enter Servi ceAgr eenent Domai nSer vi ce in the Name field
and click Next.

7. Do not create operations and click Finish.
You have created a domain service containing a view of the class
model. This view includes three classes (ServiceAgreement,
Customer, and Call) with all their attributes. Expand the service
node and then ServiceAgreementDomainService. The resultin the
Explorer [Domain Model] appears like this:

Figure 1-52 ServiceAgreementDomainService

It is possible to generate a service model from the class model, by
selecting Model>Generate Model>Generate Service from Class.
This scenario is not demonstrated in this tutorial.

Step 4 ? Update application models

In this step you generate the Web, EJB and DBMS models from the
domain model (the class and service models). The domain service
definition is used to generate a session component in the EJB model and
a Web component in the Web model.

1. From the menu, select Model>Update All Models to display the
Update all models wizard.

2. Select appl i cati on as the model package you want to update,
and click Finish.
The result in the Explorer [Application Model] looks like this:

1-76 Tutorials

OptimalJd 3.1

Figure 1-53 Application models

By default, generating the application model results in EJB entity
components that provide one view consisting of ServiceAgreement and
Customer (by reference); the another view consisting of Customer, Call
(by value), and ServiceAgreement (by reference).

Using OptimalJ: Tutorials 1-77

OptimalJd 3.1

As a result of defining a domain service, an EJB session component is
also generated, which provides a view of ServiceAgreement and
Customer (by value). It allows end-users to display and maintain the
data of ServiceAgreement, Customer, and Call on one page.

Step 5 ? Generate and compile the code

Now you have completed the modeling, you must generate and compile
the code for the application.

1. Togenerate the code, select from the menu Model>Generate All
Code.

2. You are prompted to Select Filesystem to Generate code for
Module: ejb. Select\ Opt i nal J\ dormai nSer vi ce\ cr nEj bCode
and click OK.

3. You are prompted to Select Filesystem to Generate code for
Module: Web. Choose
\ Opt i mal J\ donai nSer vi ce\ cr MAébCode to generate the code
for the Web sources and click OK.

4. Wait for the generation process to complete, then choose
Project>Compile Project.

The message line in the main window shows the progress of the
compiling process and reports Finished project when the
compilation is completed.

Step 6 ? Create tables in the database

Before you can run the application, you need to create the database
tables. The DBMS package contains a DBMS metafile and all the SQL
scripts needed to drop, create, and initialize tables.

To create the table:
1. From the Start menu, start SOLID for OptimalJ, the default
SOLID database.
2. In the Explorer [Code model], expand the node for the DBMS
package.
3. Double-click the file Sol i d_Met aCrm sgqm

1-78

Tutorials

OptimalJd 3.1

Figure 1-54 Creating database tables

The OptimalJ SQL Workbench starts and shows the database
connection window.
If you have properly configured your SOLID database settings (see
Setting up a SOLID database), you can accept the default
parameters.

4. Click OK.

5. In the SQL command window, click Create to load the Create
SQL script in the command window.

6. Click Exec Batch to run the script.

7. Close the SQL Workbench.

Step 7 ? Test the application

To test the application, you need to start the Application Server and Web
Server. When the Application Server starts, it generates stubs and
skeletons for the Java beans. The EJB module deployment descriptors
contain the information needed to generate and compile stubs and
skeletons.

To start the EJB Server:
1. Choose Test>Start Application Server.

Using OptimalJ: Tutorials

1-79

OptimalJd 3.1

Additional tabs in the Output window show the progress of stub
and skeleton generation, as well as information on the name
server, the EJB Server, and Web server.

The Web server is also started, automatically executing the

Mai nMenu. j sp, the home page of an OptimalJ Web application.

Figure 1-55 Main Menu

2. Inyour Web browser, click Maintenance
ServiceAgreementDomainService.

3. Tocreate a new service agreement, click New to display the form
for maintaining service agreements and customers.

4. Enter data for the service agreement (the fields marked with an
asterisk are mandatory).

5. Tocreate a new customer for this service agreement, click Create.

1-80 Tutorials

OptimalJd 3.1

6. Enter data for the customer.

To create a customer call for this customer, click Create.

8. Enter the call data and click OK to save the call information and
return to the Customer page.

9. Click OK to save the customer information and return to the
ServiceAgreement page.

~

Figure 1-56 Maintenance form for ServiceAgreementDomainService

10. Click OK.

11. Click Submit to store the data in the database.

12. Click Browse.
You have created a service agreement, associate customer and
call. The domain service made it possible to add the data to the
database from a single component.

Using OptimalJ: Tutorials 1-81

OptimalJd 3.1

ServiceAgreementDomainService provides a view of ServiceAgreement
and Customer data by values. You can compare this view to the default
view available for ServiceAgreement. While the ServiceAgreement view
relies only on the data supplied by the ServiceAgreement entity bean, the
view provided here relies on the session bean
ServiceAgreementDomainService that uses the ServiceAgreement and
Customer entity beans to create this composite view.

In this tutorial, you used the CRM class model and extended it with a
domain service that enables you to maintain ServiceAgreement and
Customer. You created the domain service manually, but you can also
generate automatically the service model from the class model.

Further reading

More information on domain services is available in Using OptimalJ
documentation.

1.8 Defining a component model

The component model lets you visualize how OptimalJ components relate
to one another. By default, OptimalJ components are related to one
another by means of serving attributes (that is when you update the
application model from the domain model definitions). However, you can
also build the component model gradually using invocations. You can
generate code to invoke multiple components methods by modifying the
usedComponent and usedOperation properties of the client component.
This is done in the Create Component wizard, in the Properties window,
or by drawing dependencies between components in the Application
Component Diagrams. The Service Locator, that is part of the Business
Facade, takes care of processing invocations by locating the appropriate
service objects through JNDI.

In this tutorial, we want to initialize the call severity attribute according
to the service agreement service level attribute (all calls for a customer
with gold service level being critical). To implement this requirement,
you create a session component that invokes the findByProfileOnKey
finder method on the ServiceAgreement entity component. The session
component acts as a facade for the Web component Customer. The Web
component invokes the session component to get the serviceLevel
attribute and set the Call severity attribute based on the service level.

1-82

Tutorials

OptimalJd 3.1

The following steps describe how to assign the session component with
the Service Agreement entity component as usedComponent and the
findByProfileOnKey finder method as usedOperation. Doing so allows
you to invoke the finder method, retrieve a service agreement data via
the Business Facade, and use this data to initialize the Call severity
based on the service agreement level.

Prerequisites

= Familiarity with the basic development features of OptimalJ as
described in the tutorial Developing your first OptimalJ application.

« Familiarity with the concepts of Web and session components.

Duration
This tutorial takes approximately one and a half hours to complete.

Objectives

This tutorial demonstrates how to use components and the operations
they contain.

Step 1 - Prepare the filesystem
Create a new directory for the example application, for example:

e \ Opti mal J\ ConpModel ?this directory will hold your model
definitions, and EJB and Web code in separate subdirectories.

Step 2 - Create a new project containing the CRM example

The CRM example is a sample application delivered with OptimalJ that
demonstrates features and functionality available in OptimalJ. You can
enable the CRM application when creating a new OptimalJ project.

To create a new project based on CRM:

1. On the menu, select Project>New OptimalJ Project. Set the
project name to Conponent Model and click Next.

2. Select Experinment with one or nore exanpl e Mdel s, set
the Unpack dir to\ Opti nal J\ ConpModel and click Next.

3. Select the CRM Example (sample domain model) check box and
click Next.

4. Click Finish.

Using OptimalJ: Tutorials

1-83

OptimalJd 3.1

Figure 1-57 CRM model

Step 2 - Create the Accessor domain service

You are now going to generate the domain service model from the class
model and create an additional domain service called AccessorSvc.
AccessorSvc acts as a facade to allow the Web component Customer to
invoke the findByProfileOnKey method on the ServiceAgreement entity
component.

1.

how

In the service model package, right-click
ServiceFromClassPattern and select Update Model. Two domain
services are automatically generated.

Right-click the service model package and select New
Child>DomainService.

Select Do not use View on Domain Class, and click Next.

In the Name field, enter Accessor Svc and click Next.

Create an operation get Sa returning a String and taking sald
(String) as parameter:

1-84

Tutorials

OptimalJd 3.1

Figure 1-58 getSa operation

6. Click Finish.

Note: You do not need to create a domain service attribute.

7. On the menu, select Model>Update All Models, select cr mand
click Finish.

Step 3 - Modify the component model

You must now modify the component model and create dependencies
between the components AccessorSvc, Customer, and ServiceAgreement.

1. In the Explorer [Application Model], right-click ej b and select
Show Application Component Diagram.

2. In the Application Component Diagram, click the Dependency
Edge tool (the arrow), and draw a dependency from AccessorSvc to
ServiceAgreement.

Using OptimalJ: Tutorials 1-85

OptimalJd 3.1

Figure 1-59 EJB component model

3. Inthe Application Component Diagram, double-click AccessorSvc
to open the Component Editor.

4. Click Next until you reach step 6 (Edit Used Components), click
crm appl i cation. ej b. Servi ceAgr eenment to make it active

and select the
crm application.ejb. Servi ceAgreenent . findByProfile

OnKey(Dat aTypes. ej bDat aTypes. Stri ng) check box.

Note: You have modeled your first invocation, and filled the
usedComponent and usedOperation properties. From this definition, a
method is generated in the code model to invoke the findByProfileOnKey
method.

5. Click Finish.

6. Expand the node for the Web model package, right-click the
Customer Web component and select Edit.

7. Click Next until you reach step 8 (Edit Used Components).

1-86 Tutorials

OptimalJd 3.1

8. Click Add, select AccessorSvc and click OK.

9. Select the method
crm appl i cation. ej b. Accessor Svc. get Sa(Dat aTypes. €]
bDat aTypes. Stri ng) check box.

10. Click Finish.

You have created two invocations. The First one by using the Application
Component Diagram, the second one directly in the Component Editor.
Note that although you could directly invoke the finder method from the
Web component, it is generally considered a best practice to perform this
access using a session component.

Step 4 - Generate code and use invocation methods

You have now created your component model, you need to generate code
and use the invocation methods that are generated. To implement this
tutorial's requirements, you need to add code in three places:

In AccessorSvcBean?You must implement the getSa method. This
method gets the service agreement id as parameter, it invokes the
finder method which and calls the getServiceLevel method and
returns this attribute to the calling method.

In CustomerSelectAction?You must extract the service agreement id
and use it as parameter to call your invocation method for getSa. This
returns the service level that you make available to other Web actions
by passing it to the session object.

In CustomerCallNewAction?You must extract the service level from
the session object and use it to initialize the call severity.

1. On the menu, select Model>Generate All Code.
2. You need to mount directories for the Web and EJB code.

Select \ Opt i mal J\ ConpModel \ cr nEj bCode and click OK.

Select \ Opt i mal J\ ConpModel \ cr nWebCode and click OK.

4. Implement the getSa method. In the Explorer [Application
Model], in the ej b model package, right-click the AccessorSvc
session component and select Edit Free Blocks in Generated
Files>BusinessMethods>AccessorSvcBean.java>body
(getSa).

5. In the Source Editor, copy or enter the following code inside the
getSa method free block:

1] try {

2| @l lection sa®l| =
i nvokeF ndByPr of i | eQnKeySer vi ceAgr eenent (sal d) ;

w

Using OptimalJ: Tutorials

1-87

OptimalJd 3.1

3|
4|
5|

I
6 |

I
7|
8 |
9|
10 |
11 |

Iterator it = saQll.iterator();
while (it.hasNext()) {

Servi ceAgreenent Local salbbj = (Servi ceAgreenent Local)

it.next();

Servi ceLevel Ehum sen = salbbj . get Servi ceAgr eenent () .

get Servi celLevel ();
returnval ue = sen.toSring();
}
} catch (Exception e) {

Systemerr. println("Exception occurred’ + e);

Note: This methods returns a service agreement level.

1]
2|

I
3

I
4|
5]

Press F9 to compile the file. This also reports any potential error.

In the Explorer [Application Model], right-click the Web

component Customer and select Edit Generated
Files>CustomerSelectAction.java.

At the very bottom of the file, locate the free block before the

finishAction method, and enter the following code in it:

Servi ceAgreenent Key nyQust Attr = (Servi ceAgr eenent Key)

request . get Attri but e(" Servi ceAgr eenent Servi ceAgr eenent Key") ;

if(nyQust Atr
'=null){

tryf
Sring nyQustSring =

i nvokeGet Sa(get Accessor SvcBusi nessFacade(sessi on),

I
6|
7

I
8|

I
9|

nyQust Attr.getSald());
session. set Attribute("salevel ", nyQustSring);
}
cat ch(Exception e) {
Systemout . println("sonme exception occurred:

" te);

1-88

Tutorials

10 |

OptimalJd 3.1

Note: This method invokes the getSa method to get the service level.

9.
10.

11.

1]
2|
3]
I
4
5]
6|
7
8|
9|
10 |
11 |

Press F9 to compile the file. This also reports any potential error.
In the Explorer [Application Model], right-click the Web
component Customer and select Edit Generated
Files>CustomerCallNewAction.java.

At the bottom of the file, locate the free block after the
formBean.init(request); and enter the following code in it:

Sring salevel = (Sring) session.getAttribute("salevel");
i f (salLevel .
equal s("GALD")){
fornBean. set Gal | Severity("CR T CAL");
}
el se if(salevel . equal s("S LVER")) {
fornBean. set Gal | Severity("NIRVAL");

}
el se {

fornBean. set Gal | Severi ty(" ENHANCEMENT") ;
}

Note: Based on the service level you set the call severity.

12.

Press F9 to compile the file. This also reports any potential error.

Step 5 - Compile and test the application

You now need to compile your code, start the default Solid database, start
the application server, and test your application.

1.
2.

hw

On the menu, select Project>Compile Project.

Start the SOLID server by double-clicking the Solid 4.0 icon on
your desktop. This starts the OptimalJ default database that
contains data for the CRM application.

On the menu select Test>Start Application Server.

To test the application, perform the following steps:

Click Maintenance Customer.

Using OptimalJ: Tutorials

1-89

OptimalJd 3.1

2. Click Browse.

3. Click Edit for the customer John Smith.
Note that sald 0001 corresponds to a bronze service agreement
level.

4. Click Create to create a new customer call.
Note that the call severity is set to enhancenent .

5. Enter some values and click OK to go back to the customer edit
page.

6. In the customer edit page, click Select for customer sald, and
select the gold service agreement level.

7. Click Create again and observe that the call severity is now
initializedtocritical .

8. Close your Web browser and stop the application server using
Test>Stop Application Server.

The ability to define your component model and your method invocations
allow for a greater flexibility when building or integrating an application.
By using Application Component Diagrams or by editing components,
you can model the way OptimalJ components interact with one-another.
Note that not all invocation possibilities are supported, for more
information refer to the Further reading section of this tutorial.

Further reading

To find more information on the component model and on invocations,
see also Component model concepts.

1.9 Modifying Access Behavior

This tutorial shows you how to modify the access behavior to the data in
a domain service. The service model allows you to define behavioral type
of information, and also to pre-define the accessibility. The access
behavior is modeled by using access properties. Access properties are
boolean properties, defined at the domain services level. The
transformation patterns use the access properties to determine what
access is allowed to the different components, attributes and operations.

1-90

Tutorials

OptimalJd 3.1

The modification of the access behavior results in removal of buttons,
hyperlinks and/or fields. This tutorial uses the CRM example as the basis
for which you generate a domain service. The domain service provides a
domain view for ServiceAgreement, Customer, and Call, for which you
define access behavior.

Prerequisites

= You are familiar with the creation a of domain service. See Defining
a domain service model for the details.

Duration
This tutorial takes approximately one hour to complete.

Objectives

In this tutorial, you change the default access properties of elements from
a domain service that is part of the CRM example application. By
changing these properties, you learn how to modify the access behavior
of the Web component generated from the domain service.

Step 1 - Prepare the file system

Create a new directory for the example application, for example:
\ Opt i mal J\ AccessBehavi or.

This directory will hold your model definitions, EJB, and Web code in
separate subdirectories.

Step 2 - Create a new project containing the CRM example

The CRM example is a sample application delivered with OptimalJ that
demonstrates features and functionality available in OptimalJ. You can
use the domain model of this application as a starting point for this
tutorial.

To create a new project based on CRM:

1. From the menu, choose Project>New OptimalJ Project. Enter
AccessBehavi or as the Name and click Next.

2. Select Experiment with one or more example Models. Set
the Unpack dir to the directory \ Opt i mal J\ AccessBehavi or
you created in Step 1 and click Next.

3. Select the CRM Example (Sample domain model) Install
check box and click Next.

Using OptimalJ: Tutorials

1-91

OptimalJd 3.1

4,

Click Finish.

Step 3 - Generate the service model

In this step, you generate the service model from the class model. Using
this option, OptimalJ by default generates a domain service for each
domain class that is not composite part of a composite aggregation.

1.

2.

3.

4.

Choose Model>Generate Model>Generate Domain
Models>Generate Service from Class.

In the Select Model Package that contains Class Model pane of the
wizard, accept the default class package and click Next.

In the Select Model Package to generate Service Model in pane,
accept the default service package and click Next.

Accept the defaults in the Select generation options pane and click
Finish.

Figure 1-60 Domain model containing the generated service model

1-92

Tutorials

OptimalJd 3.1

Step 4 - Modifying the access behavior of the domain service

You will change the functionality of the ServiceAgreementSvc domain
service so that a user of the application can only read existing
ServiceAgreements. The user cannot read or modify the
ServiceAgreement attribute saPrice. The user can add Customers and
Calls to a Customer. Customers cannot be removed. The user can add
new Calls to a Customer but cannot update or read the Call attribute
callResolved.

Modify the access behavior of the existing domain service:

1.

In the Explorer [Domain Model], expand the donai n. servi ce
package, select the serviceagreementsvc domain view.

In serviceagreementsvc, select the ServiceAgreement class view.
In the Properties window, set the createAllowed and the
deleteAllowed to False.

Expand ServiceAgreement, choose saPrice, and in the Properties,
set readAllowed and updateAllowed to False.

In serviceagreementsvc domain view, select the Customer class
view, and in the Properties window set the deleteAllowed to False.
In serviceagreementsvc domain view, expand the Call class view,
and choose callResolved.

Using OptimalJ: Tutorials

1-93

OptimalJd 3.1

Figure 1-61 Select callResolved in the Call class view

and in the Properties window set readAllowed and updateAllowed
to False.

Step 5 - Update the application model

In this step you generate the Web, EJB and DBMS models from the
domain model, that is the class and service models. From each domain
service definition, a session component and a Web component are
generated respectively in the EJB and Web models.

Note: Use this option also if you make changes in the domain model and
propagate them to the application model.

1. From the menu, select Model>Update All Models to display the
Update All Models wizard.
2. Select the crm model package and click Finish.

The result in the Explorer [Application Model] looks like this:

1-94 Tutorials

OptimalJd 3.1

Figure 1-62 Explorer [Application model] window

Using OptimalJ: Tutorials 1-95

OptimalJd 3.1

Step 6 - Generate and compile the code

You generate code for the application model. Each model creates a
number of files (Java, JSP, XML) from the model definitions.

To generate the application code

1. In the menu bar, select Model>Generate All Code.

2. You need to mount directories for the Web and the EJB code.
Select \ Opt i mal J\ AccessBehavi or\ cr nEj bCode and click
OK.

Select \ Opt i mal J\ AccessBehavi or\ cr MAébCode and click
OK.
3. From the menu select Project>Compile Project.

Note: When the compilation has finished successfully, the message
Finished Project AcccesBehavior appears in the Output Window
[Compiler] window.

In the previous step, you generated the application code for the CRM
example for which you created domain services. The domain service that
you modified is implemented as a ServiceAgreementSvc EJB session
component that serves a ServiceAgreementSvc Web component. In the
Explorer [Application Model], double-click on a Web component in the
crm.application.web package, to open the Web component Diagram. The
diagram shows you how these components are related to the existing
components of the CRM example application.

1-96 Tutorials

OptimalJd 3.1

Figure 1-63 Overview of the components of the application

Step 7 - Test the application

To test the application, you need to start the database and the
application server. You do not need to start the Web server. OptimalJ
starts the Web server when the application server has started.

1. Startthe start the SOLID server by double-clicking the SOLID 4.0
icon on your desktop.

2. From the menu, select Test>Start Application Server to start
the EJB and the Web servers.

3. Inyour Web browser, click Maintenance
ServiceAgreementSvc.
Note that there is no hyperlink New to create a new
ServiceAgreement.

4. Select Browse.

Using OptimalJ: Tutorials 1-97

OptimalJd 3.1

Figure 1-64 ServiceAgreementSvc

Note that saPrice is not visible
5. Click Edit to edit the first ServiceAgreement.
Note that there is no button to delete the ServiceAgreement
6. In the list of Customers, click Edit to edit the first Customer
Note that there is no button to delete the Customer.
7. Click Create to add a new Call to the Customer.

1-98 Tutorials

OptimalJd 3.1

Figure 1-65 Adding a new Call to a Customer

Note that the field cal | Resol ved is not displayed.
8. Enter the following values

Table 1-3 Call attributes and values

Attribute Value

callld 0004
callShortDescription initial value missing
callDescription not available

Accept the defaults for severity and timestamp. Click OK.

Using OptimalJ: Tutorials 1-99

OptimalJd 3.1

Figure 1-66 List of Calls after creation of a new Call

9. Click OK twice to finalize the update of the ServiceAgreement.
The browser reports the message ServiceAgreement successfully
updated.

10. Click Submit to commit the changes. The browser reports the
message ServiceAgreement successfully stored.

11. Click Home.

In this tutorial, you learned how to modify the access behavior of a Web
component generated from a domain service, to limit the access to create,
read, update, and delete actions, and to prevent data from being
displayed. You generated the domain services from the CRM example
class model. The ServiceAgreementSvc domain service enables users to
create and delete ServiceAgreements, and to create and delete
Customers. You modified the access behavior of this domain service by
using access properties. You disabled the removal and creation of
ServiceAgreements, and the removal of Customers. You prevented
ServiceAgreement and Call attributes from being updated or displayed.

Further reading

More information on domain services is available in Using OptimalJ
documentation.

1-100

Tutorials

OptimalJd 3.1

1.10 Adding business rules

Business rules specify functionality an application has to deliver, such
as constraints on the values for a field, or dependencies between
attributes or between classes.

Business rules can be expressed as (for example):

= Business expressions used within business methods
= Initial values for attributes

In this tutorial, you implement a business rule using a business method,
a business expression, and initial values for attributes.

The business method calculates the average age of the calls in days for
the CRM sample application, as follows:

averageAgeCal |l =tinedifference(todaysDate and Cal |l Dat e)
[/ nunber Cal | s;

A business expression defined in a business expression library performs
the calculation of the time difference. The code for this business
expression looks like:

timeDi fference = (todaysDate.getTine() -
callDate.getTinme()) / factorMIIi Sec;

Additionally, for the domain struct type Addr ess and the domain fields
street, city, countryCode, and phone you define initial values to
populate these fields at runtime.

Prerequisites

= This tutorial uses the CRM database provided with the OptimalJ
installation.

= You must be familiar with the basic development features of
OptimalJ.

Duration
This tutorial takes approximately one hour to complete.

Objectives

In this tutorial, you learn how to define initial values for attributes, add
a domain operation, create a business expression library, and define a
business expression. You then implement a business method in a free
block that invokes the business expression.

Using OptimalJ: Tutorials

1-101

OptimalJd 3.1

Step 1 - Prepare the filesystem
Create a new directory for the example application, for example:

e \cpw\oj\ busrul es?this directory will hold your model
definitions, and EJB and Web code in separate subdirectories.

Step 2 - Create a new project containing the CRM example

The CRM example is a sample application delivered with OptimalJ that
demonstrates features and functionality available in OptimalJ. You can
enable the CRM application when creating a new OptimalJ project.

To create a new project based on CRM:

1. On the menu, select Project>New OptimalJ Project. Set the
project name to AddBusi nessRul es and click Next.

2. Select Experinment with one or nore exanpl e Model s, set
the Unpack dir to\ cpw\ 0j \ busr ul es and click Next.

3. Select the CRM Example (sample domain model) check box and
click Next.

4. Click Finish.

Figure 1-67 CRM domain class model

Step 2 - Specify initial values for attributes

The initialValue property sets the value of an attribute when a new
occurrence of a domain class is created.

To specify initial values:

1. In the Explorer [Domain Model], expand the domain model, and
select the donai n. cl ass. Addr ess struct type.

1-102 Tutorials

OptimalJd 3.1

2. Expand Addr ess, select the domain field st r eet .
3. In the Properties window, click initialValue and then the browse
button to open the Property Editor for initial values.

Figure 1-68 Initial Value browse button

Note: If the Properties window is not visible, open it by selecting
View>Properties in the menu bar.

4. Set the language to Const ant .

5. Enter One Canpus Marti us in the body of the initial value.
6. Click OK.

7. Repeat the steps 2 to 6 using the listed values:

Table 1-4 Initial values for Address fields

Domain field initialValue Language initialValue Body
city Const ant Detroit
countryCode Const ant us

phone Const ant +01

Step 3 - Add a domain operation

The domain operation is used to create a business method in the EJB tier
and a Web action to access this method in the Web tier. The business
method causes the generation of a dedicated method in an entity bean.

1. In the Explorer [Domain model], right-click
domai n. cl ass. Cust oner to display a context-sensitive menu.

2. Choose New Child>DomainOperation on the menu.

3. Inthe wizard, click Add to add the operation name. In the Name
field, enter aver ageAgecCal | .

4. Select| ong as Return Type.

5. Click Add, enter r esol ved as Name, choose bool ean as Type,
and i n as Kind.

Using OptimalJ: Tutorials

1-103

OptimalJd 3.1

Figure 1-69 Create domain operation

6. Click Finish.

7. Update all models. Choose Model>Update All Models in the
menu. Select cr mand click Finish to update the application
models.

Wait for the generation process to complete.

Step 4 - Create a business expression library and a business
expression

A business expression library holds reusable code that can, for example,
be invoked from a business method.

To create a business expression library:

1. In the Explorer [Application Model], right-click
crm appl i cation. ej b and select New Child>Business
Expression Library to display the Create
BusinessExpressionLibrary wizard.

2. Enter crnrul es in the Name field. Click Next.

3. Define an expression in the library. You use this expression to
calculate the time (factored to days) from the difference between

1-104 Tutorials

OptimalJd 3.1

two dates t oDat e - fronDat e in the business method
aver ageAgeCal | . Click Add and enter ti neDi f f er ence in the
Name field. Select | ong for the return type.

4. Add two parameters using the listed values:

Table 1-5 parameters for timeDifference

Name Type
fronDat e Dat e
t oDat e Dat e

Figure 1-70 Create business expression wizard

5. Click Finish.

The business expression library cr nr ul es and the business
expression ti meDi f f er ence are added to the CRM application.

6. In the Explorer [Application Model], select
crmapplication.ejb.crnmrules.tineDifference. Inthe
Properties window, select the body property in which you can
enter the Java code for the business expression. Click the browse
button.

Using OptimalJ: Tutorials

1-105

OptimalJd 3.1

Remove the comment and enter the following Java code:
long factorMI i Sec = 60000*60*24; // to make mlliseconds
a day
return(long) ((toDate.get Tine()-fronbate. get Tine())/(factorMI i Sec));

Caution: Make sure the language setting is Java.

7. Click OK.

Note: The code you enter here is generated in the body of a method in
Crnr ul es. j ava class. This method is invoked when using the library.

Step 5 - Generate code

When the application model is ready, you can generate the application
code.

To generate code:

1. On the menu, select Model>Generate All Code.

2. You need to mount directories for the Web and EJB code.
Select \ cpwr\ oj \ busr ul es\ cr nEj bCode and click OK.

3. Select\ cpwr\ oj \ busrul es\ cr MébCode and click OK.

Step 6 - Implement the business method

The operation aver ageAgeCal | was added to the entity bean
Cust oner Bean in the form of a business method. In this step, you add
the code that is executed in the body of the method.

1. In the Explorer [Application Model], expand the node
crm application.ejb.

2. Right-click the EJB entity component Cust oner , and choose Edit
Free Blocks in Generated
files>BusinessMethods>CustomerBean.java>body(averag
eAgecCall).

Figure 1-71 Editing CustomerBean

1-106

Tutorials

3.
1]
I
2|
31
4|
I
5
I
6|
71
8 |
I
9|
10 |
11 |
12 |
13 |
14 |

OptimalJd 3.1

The Source editor displays in blue the guarded blocks that cannot
be modified by developers and, in white, free blocks in which you
are invited to add your own code.
In the body of the business method, add the following code:
java.util.Date today = newjava. util.Date(); //sets date
of today
int counter=0;
for (Iterator i=call @ll.iterator();i.hasNext();) {
Gil I Data cal | Browse = (Cal I Data) i.next(); //1oop through
Gl of Qustoner
if (resol ved=cal | Browse. get Gal | Resol ved()) { //if status
as par anet er
count er ++;
returnval ue = returnval ue +
Gmul es. tineD fference(cal | Browse. get Gal | Ti nest anp(),
today) ;

}

if (counter = 0) // avoid division by zero
returnval ue = Q;

el se

returnval ue = (long)returnVal ue/ counter; // average

Using OptimalJ: Tutorials

1-107

OptimalJd 3.1

Figure 1-72 Source Editor

4. Click File>Save to save the change made in this method.

Step 7- Compile the code
Now that all the code is generated and adjusted, you can compile it.
To compile the code:

1. On the menu select Project>Compile Project.
The message line in the main window shows the progress and
reports. It displays ?Finished crm? when the compilation has
completed.

1-108

Tutorials

OptimalJd 3.1

Step 8 - Start the database and the application server

Before running the application, OptimalJ compiles the stubs and
skeletons for the Java beans and starts the name server and the EJB
Server. The EJB module deployment descriptors contain the information
to generate and compile stubs and skeletons. Then, OptimalJ runs the
default Web server.

To start the database and the application server:

1. Start the SOLID server by double-clicking the Solid 4.0 icon on
your desktop. This starts the OptimalJ default database that
contains data for the CRM application.

2. Onthe menu, select Test>Start Application Server to start the
EJB and Web servers.

Step 9 - Test the application
To test the application you need to execute the averageCall business
method for a given customer, and create a new customer to experiment
the initialVValue property.
To test the application:

1. Inyour Web browser, click Maintenance Customer to display

the Browse page.

2. Click Browse.

3. Click Edit for 0001 John Snmith.

4. Click averageAgecCall to call your business method.

Note: The hyperlink takes you to the screen where the callResolved
parameter is entered.

5. Click OK.
The operation you implemented as a business method proceeds to
browse through the calls that have not been resolved to calculate
the aver ageAgeCal | and returns this value.
Changing the input parameter you can also calculate
aver ageCal | Age for the calls which were resolved.

Using OptimalJ: Tutorials

1-109

OptimalJd 3.1

Figure 1-73 Result page

Note: Results vary depending on the input parameter (resolved) and the
date of execution.

6. Now, create a new Customer.

1-110 Tutorials

OptimalJd 3.1

Figure 1-74 Address with initial values

Note: The editing page contains values you defined for the Address struct
type domain fields.

7. To stop the application, close the browser window.
8. On the menu, select Test>Stop Application Server.

In this tutorial, you enriched the CRM application with business rules.
More can be done using OptimalJ, for example you can use business
expressions for initial construction values, you can define delete rules for
associations, you can define pre- and post- conditions for business
methods, the options are there to use. Additionally, you can make your
business expression dynamic by setting the dynamic property of the
business expression to Tr ue. Dynamic business expressions are
generated in XML files instead of Java files. You use the Business
Expression Server to execute them.

Using OptimalJ: Tutorials 1-111

OptimalJd 3.1

Further reading

To learn more about business rules, business expressions and dynamic
business expressions, see also Business rules in Developing an
application with OptimalJ.

1.11 Creating a two-tier application (DAO component)

Data Access Object (DAO) components allow you to access data in a
database directly from the Web tier. In this tutorial, you create data
access objects (DAO) inside the DBMS model from an imported domain
model. You then update the application model, generate code, and access
the DAOs directly from the Web tier. This solution involves a page
iterator for retrieving data using a paging mechanism. The data is sent
page-by-page to the client, instead of as one large data set.

Prerequisites

You are familiar with the basic development features of OptimalJ and
have followed the tutorial Your first OptimalJ application.

Duration
This tutorial takes approximately 35 minutes to complete.

Objectives

This tutorial teaches you how to create a two-tier application where the
Web tier communicates with a database through a DAO component.

Step 1 - Prepare the filesystem
In your file system, create the following directories:

e \Optimal J\twotier\twotierMdel ?this directory holds your
model definitions and the DAO components.

e \Optimal J\twotier\twotier WebCode?this directory contains
the Web application code.

Step 2 - Create a new project
It is convenient to perform each tutorial in a new project.

1-112

Tutorials

OptimalJd 3.1

To create a new project:

1.

2.

On the menu, select Project>New OptimalJ Project. Set the
project name to TwoTi er Appl i cati on and click Next.

Select the type of project. Select New Model and browse to
\Optimal J\twotier\twotierMdel . Click Open and then
Next.

Create a package structure. Enter cr nt wot i er in the Fully-
qualified Package Name field.

Set the initial package structure to Two Ti er Application
St ruct ur e and click Next.

Configure mount point settings. The code (EJB and Web) is
generated in separate directories (or mount points). In this
tutorial, the Web code requires a separate directory. Select Mount
each filesystem yoursel f, click Next, and then Finish.

By selecting a two-tier initial package structure, you create a structure
containing a domain model with a class model, and an application model
with a database and a Web model. These models contain the appropriate
Technology Pattern to generate elements for a two-tier application (DAO
and Web components, and a database schema).

Step 3 - Import the CRM application

The CRM example is a sample application delivered with OptimalJ that
demonstrates features and functionality available in OptimalJ.

The application is available asan XML importfile (cr nt wot i er. xnl) in
Optinmal J Installation directory\docs\tutorial.

1.

2.

On the menu, select Model>Import Model>Import Domain
Class from UML.

Browse to Optinal J Installation

di rectory\docs\tutorial, select the filecrntwoti er.xm ,
click Open, then click Next.

Expand the nodes Model . cr nt wot i er . domai n, select cl ass as
the model in which to import and click Next.

Do not modify the default import pattern, click Finish.

Using OptimalJ: Tutorials

1-113

OptimalJd 3.1

Figure 1-75 CRM domain class model

Step 4 - Generate the application model

DAO components communicate directly with the database. They are
generated in the DBMS model from a class model.

To generate DAO and Web components:

1. In the menu bar, choose Model>Update All Models.
2. Select crmt wot i er and click Finish.

1-114 Tutorials

OptimalJd 3.1

Figure 1-76 Two-tier CRM application model

Web serving attributes point to serving attributes of DAO components
(via the Web serving attribute's usedServingAttribute property). This
allows DAO components to exchange data with Web components.

Step 5 - Generate and compile all code

After defining your application DBMS and Web models, you are ready to
generate the application code (. j ava, . sql , . properties,.xn , and

. | sp files) from the model definitions. When you have generated the
code, you can modify the dbns- dao. pr operti es configuration file for
the page iterator. You then need to compile your code.

Using OptimalJ: Tutorials 1-115

OptimalJd 3.1

To generate and compile the code:

1. In the menu bar, select Model>Generate All Code.

2. When prompted for a directory in which to generate the Web code,

click Mount New Filesystem.

Select Local Directory and click Next.

4. Browse to\ Opti mal J\twoti er\twoti er WebCode and click
Finish.

5. Click OK to start the code generation.

6. In the Explorer [Code Model], expand
\Optimal J\twotier\twotierMdel\crntwotier\applicat
i on\ dbrrs.

7. Double-click the dbns. properti es file to verify that the
database access properties correspond to those defined for the
database you are using.

w

Note: The database configuration is done in the Tools>Options menu.

8. Double-click the dbns- dao. properti es file to open it in the
Source Editor.

9. Set the pageSize property value to 2, for service_agreement and
customer:

Table 1-6 Setting the page size

Key Value
crnwotier. appl i cati on. dons. servi ce_agr eenent . pageS 2

ize

crnmiwoti er. appl i cati on. dbns. cust oner . pageS ze 2

With this setting, each page containing data will display no more
than two occurrences.

Note: The chapterSize value for DAO components using the page iterator
is set by default to 400. The size of this property is limited by the memory
available on your computer.

10. In the menu bar, choose File>Save to save the file.
11. On the menu, choose Project>Compile Project to compile the
application code.

1-116

Tutorials

OptimalJd 3.1

In this step you generated the code for your application model. From the
definitions contained in the DBMS model, you generated Java code for
the DAO components. DAO components communicate with the database
via JDBC.

Step 6 - Create the database tables

Because this tutorial is based on an import file in which the database
structure is slightly different from the default CRM application, you need
to create new database tables to test the application.

1. Start the SOLID server by double-clicking the Solid 4.0 icon on
your desktop.

2. In the Explorer [Code Model], expand
twot i er Model . crmt woti er. appli cati on. dbns.

3. Double-click Sol i d_Met aCr nt wot i er. sqm

In the Connect window, click OK.

5. Click Create to load the SQL script for creating the database
tables, then Exec Batch.

6. Close the SQL workbench.

E

Step 7 - Test the application

To test the application you need to start the integrated Tomcat Web
server.

To test the application:

1. On the menu, choose Test>Start Application Server

2. Test your application. In the main menu, click Maintenance
ServiceAgreement. Click New to create a new service
agreement. Repeat the operation to create at least 3 service
agreements, click Submit when you are done creating service
agreements.

3. Click Browse, then use the Prev and Next buttons to experiment
with the page iterator.

Note: Try modifying the page size in the dbns- dao. properti es (restart
the Web server every time you modify the properties file to reload the
definitions).

4. Stop the application server by choosing from the menu Test>Stop
Application Server.

Using OptimalJ: Tutorials 1-117

OptimalJd 3.1

This two-tier application allows you to create and update records without
requiring an EJB server. You tested DAOs through the Business Facade.
The page iterator has the advantage of retrieving data in pages, which
improves the performances when retrieving large data sets.

In this tutorial, you created a two-tier application in which DAO
components access data in the database directly from the Web tier. You
configured the page iterator in the dbns- dao. properti es file. DAOs
can work with or without the page iterator. You can enable or disable this
functionality by setting the supportPagelterator property of DAO
components. The page iterator provides a mechanism where data is
retrieved in blocks, improving the performance of the application.

Further reading

For more information on DAOQO, see also DAO-related documentation
topics, such as DAO and EJB architectures comparison.

1.12 Using the page iterator in a multitier environment

In this tutorial, you retrieve data using DAO components. For
maintaining the data you use EJB entity components. DAO components
are enhanced with the page iterator pattern to present pages of data,
instead of a large data set. You retrieve data from the default SOLID
CRM database.

Prerequisites

= You must be familiar with the basic development features of
OptimalJ.

= This tutorial also assumes that you followed the tutorial Your first
OptimalJd application.

Duration

This tutorial takes approximately one hour to complete.

1-118

Tutorials

OptimalJd 3.1

Objectives

In this tutorial, the CRM sample application is extended with DAO
components to enable a fast-lane reader pattern. In such an architecture,
EJB session components use DAO components for reading to the
database and EJB entity components for updates. DAO components, by
default, use a page iterator to present the data in lists.

Step 1 - Prepare the filesystem
Create a new directory for the example application, for example:

e \Optimal J\ daoThr eet i er ?this directory will hold your model
definitions, and EJB and Web code in separate subdirectories.

Step 2 - Create a new project containing the CRM example

The CRM example is a sample application delivered with OptimalJ that
demonstrates features and functionality available in OptimalJ. You can
enable the CRM application when creating a new OptimalJ project.

To create a new project based on CRM:

1. On the menu, select Project>New OptimalJ Project. Set the
project name to Pagel t er at e and click Next.

2. Select the type of project, by setting the radio group to
Experiment with one or nore exanpl e Mdel s, set the
Unpack dir to\ Opt i mal J\ daoThr eeti er and click Next.

3. Select the Install Example Module (Customer Relationship
Management) check box and click Next.

4. Do not change the default, click Finish.

Figure 1-77 CRM domain class model

Using OptimalJ: Tutorials

1-119

OptimalJd 3.1

Step 3 - Generate the application model
To create the application models and the DAO:

1. On the menu, select Model>Update All Models.

In the wizard, select cr mas the top model to be updated and click
Finish.

2. When the update is finished, on the menu, select
Model>Generate Model>Generate Application
Models>Generate DAO from Domain.

In the wizard, select cr m domai n and click Next.

Select cr m appl i cati on. dbns, click Next and then Finish to
generate DAO data schemas, DAO components, and DAO key
classes in the DBMS model.

Figure 1-78 CRM application model

3. Select the Customer DAO component.
In the Properties window, note that the supportPagelterator
property is set to t r ue. Changing this property defines whether
the component uses the page iterator functionality or not.

1-120 Tutorials

OptimalJd 3.1

Step 4 - Update an EJB session component to use DAOs

The EJB session components act as a facade for DAO and EJB entity
components. The page iterator is enabled in the DAO component. The
EJB session component must be stateful to keep a reference of the list for
the page iterator. Since EJB session components were generated when
you updated the application model, you can modify these to use DAOs
with page iterator.

1.

2.

w

o 0k

In the Explorer [Application Model], expand

crm application. ejb.

Right-click CustomerSvc and select Edit.

Click Next until you reach step 4?Edit Availability / State in the
wizard.

Set the State of the component to stateful.

Select the Manage Reference to DAO component check box.
Click Next twice and then Finish.

Double-click the ej b package to open the Diagram Editor.

Figure 1-79 CustomerSvc using DAOs

Using OptimalJ: Tutorials

1-121

OptimalJd 3.1

Note that the EJB session component CustomerSvc references
both EJB entity and DAO components. It uses DAOs for fast-lane
reading and EJBs for secure writing.

Step 5 - Generate and compile the code

You generate code for the application model. Each model creates a
number of files (Java, JSP, XML) from the model definitions.

To generate the application code:

1. In the menu bar, select Model>Generate All Code.

2. You need to mount directory for the Web and EJB code.
Select\ Opt i mal J\ daoThr eeti er\ cr nEj bCode and click OK.

3. Select\ Opti nal J\ daoThr eeti er\ cr mMMébCode and click OK.

4. On menu, choose Project>Compile Project

In this step, you generated the application code. In the DBMS model, you
created the Java code that implements DAOs communicating to the
database through JDBC. The CustomerSvc session component uses these
DAO components for fast-lane reading.

Note: You can configure the data access information, and the page iterator
settings by modifying the files dbrns. properti es and dbns-
dao. properties.

Step 6 - Test the application

To test the application, you need to start the database and the
application server.

To test the application:

1. Start the SOLID server by double-clicking the Solid 4.0 icon on
your desktop. This starts the OptimalJ default database that
contains data for the CRM application.

2. Onthe menu, select Test>Start Application Server to start the
EJB and Web servers.

3. Proceed with testing the application as described in the tutorial
Your first OptimalJ application.

The application behavior is similar to the standard CRM example
provided, although here the communication with the database takes
place both using DAO and EJB components. Additionally, you get the
advantage of retrieving data in pages.

1-122

Tutorials

OptimalJd 3.1

In this tutorial, you created DAO to access the data in the database, and
you modified an EJB Session component to reference DAOs with page
iterator.

The DAO can work with or without the page iterator, you learned how to
set the supportPagelterator property of the DAO component.

The page iterator provides a mechanism where data is retrieved in
blocks, improving performance when retrieving large data sets. This
mechanism is used in combination with EJB entity components for
secured updates of the database.

Further reading

For more information on the page iterator and DAO components, see also
Using DAO components in three-tier applications and other related
documentation topics.

1.13 Creating message-driven components

OptimalJ allows you to model an EJB message-driven component in the
EJB model. This component represents a J2EE message-driven bean (a
JMS message consumer). It can either consume all messages from a
particular destination (topic or queue), or it can consume specific
messages from the destination. Upon delivery of a IMS message, the EJB
container instantiates the corresponding message bean that handles the
messages. The IMS messages are generated by JMS message producers.

Prerequisites

= You must be familiar with the basic development features of
OptimalJ.

= You should have a basic understanding of Java Message Service
(IMS).

Duration
This tutorial takes approximately one hour to complete.

Using OptimalJ: Tutorials

1-123

OptimalJd 3.1

Objectives

In this tutorial, you should understand the essential concepts and tasks
for developing message-driven components. You create a JMS message
and transport it via a JMS queue. You create a message-driven
component, model a JMS message production, and test your application
in OptimalJd.

Step 1 - Prepare the filesystem
Create a directory structure for the example application, for example:

e \ Opti mal J\ ndConponent ?this is the root directory that will hold
your model definitions, and EJB and Web code in separate
subdirectories.

e \ Opti mal J\ ndConponent \ nodel ?this directory will hold your
model definitions.

e \Optimal J\ ndConponent \ ej bCode?this directory will hold your
EJB code.

e \ Opti mal J\ ndConponent \ webCode?this directory will hold your
Web code.

Step 2 - Create a new project
You need to create a new project to run your tutorial.
To create a new project:

1. On the menu, select Project>New OptimalJ Project. Set the
project name to Cr eat eMDC and click Next.

2. Select the type of project, by setting the radio group to New Model ,
and set the Model dir to\ Opt i mal J\ ndConponent \ nodel .
Click Next.

3. Type in the Fully-qualified Package Name si npl e_j s and
click Next.

4. Accept the default automount settings and click Next.

5. In the next panel, accept the defaults and click Finish.

Step 3 - Create a JMS message

OptimalJ delivers functionality of defining JMS messages in the EJB
model. The JMS messages are consumed by an EJB message-driven
component.

1-124

Tutorials

OptimalJd 3.1

When the JMS provider starts (in OptimalJ : the JBoss server), it creates
JMS destinations. The JMS clients can then create and consume JMS
messages from those destinations.

To generate a JMS message in the OptimalJ Explorer[Application
model], follow the steps below:

1. In Explorer [Application Model] right-click the
sinpl e_j ms. appl i cati on. ej b node and select New
Child>JMSMessage. This opens the Create JMS Message
wizard.

2. Enter the name of the new JMS message. In the Name field enter
Exanpl eMessage. Click Next.

3. Select the type of the JMS message as Text Message from the
drop-down list. Click Finish.

Step 4 - Use EJB components to produce a JMS message

You use an EJB session component to publish messages to a IMS queue.
Via an OptimalJ domain service you create a domain service operation.
The domain service results in a session component with a business
method. The session component is configured to produce a JMS message.
As a result, OptimalJ generates a private method in the code which is
responsible for the message production.

To create a IMS message producer, in OptimalJ, follow the steps below:

1. Inthe Explorer[Domain Model] window, right-click ser vi ce node
and select New Child>DomainService. This opens the Create
domain service wizard.

2. Select Do not use View on Domai n O ass for the domain
service type. Click Next.

3. Type the name of the domain service, for example,

Sender Ser vi ce. Click Next.

4. Add a domain service operation with the name sendMessage and
return type Voi d. Add a parameter of type String and call it
messageCont ent . Accept the defaulti n Kind for this parameter.
Click Finish.

5. Choose Model>Update All Models from the OptimalJ menu
and select the appl i cat i on package, as this is the package we
want to have generated.

6. Check the level of the logged information for the EJB server. To
allow the generation of logging trace information in the EJB
server's console, select menu Tools>Options.

7. Go to OptimalJ Configuration>Code Generation>Logging
Code.

Using OptimalJ: Tutorials

1-125

OptimalJd 3.1

8. Set the EJB Tier property to Tr ace. This creates entries in the
source code, which are printed in the EJB server's console.

Step 5 - Create message-driven components

OptimalJd generates EJB message-driven components that encapsulate
the functionality of a J2EE message-driven bean (MDB). The EJB
message-driven component processes JMS messages, delivered by a IMS
provider (JBoss server). The JMS messages are delivered to a JMS
destination.

The following steps guide you to create a message-driven component:

1. In Explorer [Application Model], right-click the
simpl e_j ms. appl i cati on. ej b node and select New
Child>EJBMessageDrivenComponent.

2. Enter the name of the new component. In the Name field type
Recei ver . Click Next.

3. Enter the name and select the type of the JMS destination,
according to the following values:

Table 1-7 Destination name and type
Field name Value

Destination name Exanpl eQueue
Destination type Queue

Note: Enter the destination name which will be used later as a JNDI
name for IMS messages. Be aware that the Destination name is case-
sensitive.

Click Next.

4. Skip the Delivery Type panel and click Next.

5. Select the EJB module in which the EJB message-driven
component is deployed. Select the current EJB module, ej b. Click
Next.

1-126

Tutorials

OptimalJd 3.1

6. Select the IMS messages consumed by the component. Select the
simpl e_j ms. appl i cati on. ej b. Exanpl eMessage check box.
Click Finish.

Note: If, in the dialog, no JMS message is chosen for consumption, the
generated message-driven bean will consume all available messages
declared in the model.

7. The new message-driven component, Recei ver , appears in the
Explorer[Application Model] tree. Expand the
simpl e_j ms. application. ej b. Recei ver node.
Observe the IMsMessageConsunpt i on element and its
properties. Notice that your EJB message-driven component
consumes the JMS message, created in Step 1 - Create a IMS
message.

8. Note the created elements in the Explorer[Application Model]
window. For the si npl e_j ms. appl i cati on. ej b node, you
should have a picture similar to the following:

Figure 1-80 Elements in the ejb node

Using OptimalJ: Tutorials

1-127

OptimalJd 3.1

Step 6 - Model the IMS message production

In this step, you have to model the generated session component to
produce a JMS message. The EJB session component has a list of IMS
messages that can be created from that component. This list is exposed
via the usedMessage property that indicates which JMS messages are
?used? by this component. ?Used? means in this context that this
component is responsible for the creation and sending of the messages.
For each entry in the usedMessage collection, a private Java method is
generated that has the following signature:

1| private void produce<MessageNane>(

2| Sring destinationNane,

3] A ass desti nati onType,

4| S ring used®nnecti onFactory,
5] Sring paylLoad)

6 | throws Exception;

This method is responsible for creating and sending a JMS message
<MessageName> to JNDI destination dest i nat i onNanme using a
desti nati onType. For more information, see Message production and
consumption from the OptimalJ online help.

To model the IMS message production:

1. In Explorer[Application Model] right-click the Sender Ser vi ce
session component and choose Edit from the pop-up menu. This
starts the Edit Wizard. Click Next until you reach the Edit
Produced Messages panel. Click Add and select the
Exanpl eMessage element. Click OK to add the selected IMS
message to the list of produced messages. Click Next.

2. Skip the next panel that lists JMS topics to produce messages to
and press Next.

3. The next panel contains the JMS queues to which the JMS
messages are to be sent. Add a queue by clicking the Add. In the
field enter the INDI name for a JIMS queue, for example,

Exanpl eQueue. Do not specify anything for the JMS queue
connection factory. This way, OptimalJ is using the default
connection factory of the integrated JMS provider?JBoss. Click
Finish.

4. In Explorer[Application Model] select the root package
si mpl e_j ms and generate all the code. Choose a proper mount
point for the EJB and Web related code if asked.

5. Generate all the code. In the menu bar, select Model>Generate
All Code.

1-128

Tutorials

OptimalJd 3.1

6. You need to mount directory for the Web and EJB code.

Via the wizard, select \ Opt i mal J\ ndConponent\ cr nEj bCode
and click OK.

7. For the Web tier, select\ Opt i mal J\ ndConponent \ cr MAébCode
and click OK.

8. Right-click the Sender Ser vi ce session component and choose
Edit Generated Files from the pop-up menu. Select
Sender Ser vi ceBean. j ava. Locate the method sendMessage.
In the free block of the method add the invocation call to the
private method pr oduceExanpl eMessage. Add:

1] try{

2| pr oduceBExanpl eMessage(" Exanpl eQueue”, Queue.cl ass, "defaul t",
| nessageCont ent) ;

3| } catch (Exception e) {

4| logger.error("Caught " + e.getdass().toSring() +"
| whi | e produci ng Exanpl eMessage, cause: "

5] + e. get Message());

6]}

9. Compile your project. Select Project>Compile Project from the
menu.

Since we did not provide a queue connection factory, in the previous step,
we are allowed to pass 'def aul t ' as the queue connection factory. In the
EJB deployment descriptors a resource reference is added that maps
'ims/default’ to the default connection factory for JBoss. This
functionality is only available when deploying on JBoss, as other
application servers not always provide a default connection factory. In
this case, free blocks in the deployment descriptors are available where
these mandatory references have to be added manually.

If the component has usedMessages, but you did not add any connection
factories to its list, a resource reference is added to the deployment
descriptor. The reference uses the default connection factory of JBoss
called Connect i onFact ory. This factory can be addressed by using the
logical name def aul t in the Java code (see the above code snippet). In
addition, this functionality is only available when deploying on JBoss, as
other application servers not always provide a default connection factory
that is always present. In this case, the user is offered free blocks in the
deployment descriptors where these mandatory references have to be
added manually.

Using OptimalJ: Tutorials

1-129

OptimalJd 3.1

Although OptimalJ registers any non-existing topics or queues with
JBoss, when added under Tools>Options, this is not the case for
connection factories. Any additional connection factories have to be
configured manually. See your JBoss manual for details. Once these
custom connection factories exist, they can be referred to by the EJB
component by adding the name of the factory to its
usedTopicConnectionFactory or usedQueueConnectionFactory
properties.

To be able to create custom connection factories, for example,
MyTopi cConnect i onFact ory as an actual name for the topic
connection factory, the factory needs to be configured in JBoss. Currently
OptimalJ does not offer any means to dynamically create connection
factories. To workaround this, you can create a file <. . . >-
servi ce. xnl , for example, MyConnFact or y- servi ce. xm with the
following content:

Example: MyConnFactory-service.xml

1| <?xnm version="1.0" encodi ng="UIF8"?>
2] <--

31

I
4
5|

I
6|
7|

I
8 |
9|

I

I
10 |
11 |
12 |
13 |
14 |
15 |
16 |

- The 'custom attribute of the MBean needs a uni que nane

to make the Q LServerlLService
uni que and prevents conflicts wth other service definitions.
The ' Gonnect i onFact or yJNDI Ref' and ' XAQonnect i onFact or yJNDI Ref '
shoul d get a uni que
nane which will turn up inthe jndi global nane space.
The ' ServerB ndPort' shoul d be uni que. Wen the port
nunber equal s anot her port,
depl oynent of this filewll fail wth the nessage:
ERRR
[QLServerlLService] Sarting failed java. net. B ndExcepti on:
Address already in
use: JWI B nd

Exanpl e:

<server>

<nibean code="org.jboss. ng.il.oil.Q LServerlLService"

nane="j boss.

1-130

Tutorials

OptimalJd 3.1

| ny: ser vi ce=l nvocat i onLayer,

17 | type=AaL,
18 | cust oM/ Ser vi ce" >
19 | <depends optional -attri but e- nane="1| nvoker" >j boss.

| ny: servi ce=l nvoker </ depends>

20 | <attribute nane="Connect i onFact or yJNO Ref " >M/Exanpl eFact or y</
attribute>
21 | <attribute

| nane="XAdonnect i onFact or yJND Ref " >M/Exanpl eXAFact ory</ attri but e>
22 | <attribute

| nane="Ser ver B ndPort " >1234</ at tri but e>
23 | <attribute nane="H ngPeriod">60000</ attri but e>
24 | <attribute

| nane="Enabl eTcpNbDel ay">true</ attri but e>

25 | </ nbean>
26 | </server>
27 |

28 | The

| file shoul d be copied to the
<user di r >\ syst emj boss\ ser ver\ def aul t\ depl oy

| f ol der

29| sothat it will be depl oyed when the server starts. Note
| that the 'jboss' fol der does

30| not exist until you start the EIB server for the first
| tine..

31|

32 -->

33| <server>

34| <nbean code="org.jboss.ng.il.oil.QLServerlLService"

35 | nane="j boss.

| ny: servi ce=l nvocat i onLayer,

36 | type=Q L,
37 | cust onFM/Ser vi ce" >
38 | <depends optional -attribut e- nane="1 nvoker "> boss.

| nu: servi ce=l nvoker </ depends>

39 | <attribute nane="Connect i onFact or yJND Ref " >M/Topi cQonnect i onFact or y</
attribute>

Using OptimalJ: Tutorials

1-131

OptimalJd 3.1

40 | <attribute

| nane="XAGonnect i onFact or yJNO Ref " >M/Topi cXAConnect i onFact or y</
attribute>

411 | <attribute

| nane="Ser ver B ndPort " >1234</ attri but e>
42 | <attribute nane="P ngPeri od">60000</ attri but e>
43 | <attribute

| nane="Enabl eTcpNoDlel ay" >t rue</attri but e>
44 | < nbean>
45 | </server>

This file can then be copied to the
system j boss\ server\ def aul t\ depl oy folder of your userdi r so
that it will be deployed when the server starts.

Step 7 - Test the IMS message consumption

Testing the JMS message consumption requires certain settings. The
application server (JBoss) has to be aware of the IMS destinations it

must support. The whole application starts via the Web. A hyperlink

points to the method that produces the JIMS message. The application
server console shows the result of the message consumption.

To test IMS message consumption in OptimalJ:

1. Enter the JNDI name for the JMS queue. On the menu, choose
Tools>Options.

2. Go to OptimalJ Configuration>Testing>JMS>Queues.

3. Right-click Queues node and select Add queue. A Queue dialog
appears.

4. Enter the name of the queue to be used in your JMS application.
For this tutorial, enter Exanpl eQueue in the dialog box. Click
OK.

5. On menu, choose Test>Start Logging Server to trace the
results from the application server.

6. On menu, choose Test>Start Application Server. This starts
your application in the context of the application server.

Note: If you have not set up your internal test environment to start the
browser automatically to display the MainMenu, enter htt p: //
| ocal host: 8081/ Mai nMenu. j sp in your browser.

1-132

Tutorials

OptimalJd 3.1

7. In the Web browser, click the link Maintenance
SenderService, and click sendMessage. Enter some text in the
messageContent edit field, for example, A si nmpl e t ext
nmessage and click OK. You receive a notification about the
delivery of the JMS message : Sender Ser vi cesendMessage
was successful.

8. In OptimallJ, the Output Window, select the
com.compuware.log4j.LogginSocketServer - 1/0O tab.

9. Note the results. The Output
Window[com.compuware.log4j.LogginSocketServer - 1/0] shows
an output like this:

TRACE B bTier (Recei ver.java: 84) - Recei ved a Text Message
fromdestination Exanpl eQueue (queue), text is: Asinple
text message

The JMS message is produced by your Sender Ser vi ce session
component and is consumed by Recei ver via the messaging
service of JBosSs.

In this tutorial, you used the JMS facilities provided by OptimalJ with
the integrated JBoss application server. Note that executing this tutorial
with another application server, requires some additional actions. The
following optional step gives a general advice about how to deploy your
application on other JMS providers.

Step Optional - Deploying the JMS application on a different
application server than JBoss

In this step, you deploy the current tutorial example on BEA WebLogic
Server (version 7), instead of JBoss. This requires manual configuration
of the WebLogic application server (knowledge about this application
server is assumed).

1. Prepare your file system as in Step 1 - Prepare the filesystem

2. Create a project as in Step 2 - Create a new project

3. Create a JMS message as in Step 3 - Create a JMS message.

4. Create an EJB message-driven component as in Step 4 - Use EJB
components to produce a JMS message.

5. Create a message producer component as in Step 5 - Create
message-driven components.

6. Model a message production as in Step 6 - Model the IMS message
production with the following change:
In substep 3, you need to enter the name of the
QueueConnectionFactory. As configuring WebL ogic is not in

Using OptimalJ: Tutorials

1-133

OptimalJd 3.1

the scope of this document, this example is based on the exanpl es
server that ships with the WebLogic 7 application server. Based
on this server you have the choice to use an existing connection
factory or create your own. If you do not want to use the existing
one, the shortest way is to clone one of the existing factories. Call
the connection factory, for example,

MyQueueConnect i onFact ory. This is the name you need to
enter in your usedQueueConnectionFactory list.

7. Continue to model a message production as in Step 6 - Model the

JMS message production with the following change:
In substep 8, define the call to the generated private method:

1] try{

2| pr oduceBxanpl eMessage(" Exanpl eQueue”, Queue. cl ass,

" M/Queueonnect i onFact ory",
| nessageContent) ;

3| } catch (Exception e) {

4| logger.error("Caught " + e.getdass().toring() +"
| whi | e produci ng Exanpl eMessage, cause: "

5] + e. get Message());

6]}

Note: Since we provided a queue connection factory, in the previous
substep, we need to pass MyQueueConnect i onFact ory as the queue
connection factory. In the EJB deployment descriptors a resource reference
is added that maps to the referred connection factory.

8. Continue with Step 6 - Model the IMS message production.

9. Mount the appl i cati ons folder of the WebL ogic server where
this application is to be deployed.

10. Create an EAR file which is automatically deployed on the server.

Caution: This step assumes that the Weblogic application server is
running and properly configured to run its IMS facilities. This includes
adding the OptimalJ runtime libraries to the classpath of the server. The
JMS queue names and queue connection factories must be also
configured.

Right-click the mounted applications folder and select New>All
Templates. Go to Templates>Deploy>EarDef.eardef. Click

1-134

Tutorials

OptimalJd 3.1

Next. Enter the name of the eardef file, for example,

si mpl e_j ms. Click Finish. This will start the OptimalJ
Assembly Workbench. The eardef files contain definitions,
required for the generation of the EAR files.

11. On the Modules tab, add the ej b. j ar module and add the
web. war module. With the web. war module selected, enter the
context root at the bottom of the window, for example,
si mpl e_j ms. For more information about creating an EAR file,
see Creating the application EAR. Save the file and exit the
Assembly Workbench by closing the window. Right-click the
si mpl e_j ms. ear def file and select Compile.

12. The eardef file is compiled to an EAR file. The generated EAR file
is deployed automatically in WebLogic server. After a successful
deployment, navigate your Web browser to htt p: //
<server _url >:7001/si npl e_j ns/ Mai nMenu. j sp

13. Test your application.

In this tutorial, you learned the essential concepts and tasks for
developing message-driven components. You created a JMS message and
a message-driven component and modeled a JMS message production. At
the end, you tested your application to generate JMS messages and
consume them in OptimalJ.

Further reading
For more information, see the documentation on Messaging.

To learn more about the EJB message-driven component, refer to EJB
2.0 specification.

To learn more about the Java Messaging Service, refer to Sun JMS
tutorial.

1.14 Creating JMS durable subscribers

Many enterprise applications cannot tolerate dropped or duplicate JMS
messages and require that every message be received once and only once.
The guaranteed messaging ensures that messages are faithfully
delivered to their recipients. Mechanisms like message persistency and
durable subscriptions are vital to guarantee the creation of a robust IMS
application.

Using OptimalJ: Tutorials

1-135

OptimalJd 3.1

OptimalJ offers functionality to create durable JMS clients. While a
durable subscriber is disconnected from the JMS provider, it is the
responsibility of the server to store messages until the receiver is
available or the messages expire. The durable subscribers are modeled
with an associated client ID which is an unique identifier for the client.
The JMS provider tracks the client ID to identify a durable subscription.

The current tutorial creates a message-driven component as a durable
subscriber of a JMS message. A session component, situated in a
separate EJB model, acts as a IMS message producer and sender. The
two components are located and deployed in different packages to
simulate a situation in which the message-driven component is
unreachable causing the message to be retained by the JMS server until
the subscriber is available again.

Prerequisites

= You should have a basic understanding of Java Message Service
(IMS) .

= You should have completed the tutorial Creating message-driven
components.

Duration
This tutorial takes approximately 1.5 hours to complete.

Objectives

At the end of this tutorial, you should understand the essential concepts
and tasks for developing durable subscribers. You create a JMS message
and transport it via a JMS topic. You create a message-driven component
as a durable subscriber, model a IMS message production, and test your
application in OptimalJ.

Step 1 ? Prepare the filesystem
Create a directory structure for the example application, for example:

e \ Opti mal J\ ndDur abl e?this is the root directory that will hold
your model definitions, the EJB and Web code in separate
subdirectories.

e \ Opti mal J\ ndDur abl e\ nodel ?this directory will hold the model
definitions for the sender part of the application.

1-136

Tutorials

OptimalJd 3.1

e \Optimal J\ ndDur abl e\ ej bCode?this directory will hold the EJB
code for the sender part of the application.

e \Opti mal J\ ndDur abl e\ webCode?this directory will hold the Web
code for the sender part of the application.

e \Optimal J\ ndDur abl e\ Recei ve?this directory will hold the
model definitions for the receiver part of the application.

e \Optimal J\ ndDur abl e\ ej bRecei veCode?this directory will hold
the EJB code for the receiver part of the application.

Step 2 ? Create a new project

You need to create a new project to run your tutorial.

To create a new project:

1.

2.

On the menu, select Project>New OptimalJ Project. Set the
project name to Dur abl eMDC and click Next.

Select the type of project, by setting the radio group to New Model ,
and set the Model dir to\ Opt i mal J\ ndDur abl e\ nodel . Click
Next.

Type in the Fully-qualified Package Name j ns_sender and
click Next.

Accept the default automount settings and click Next.

In the next panel, accept the defaults and click Finish.

Step 3 ? Create a JMS message

The JMS messages are modeled in the OptimalJ EJB model. When the
JMS provider starts (in OptimalJ : the JBoss server), it creates JMS
destinations. JMS clients can create and consume the JMS messages
from those destinations.

To generate a JMS message in the OptimalJ Explorer [Application
Model], follow the steps below:

1.

In Explorer [Application Model] right-click the

j ms_sender. appl i cati on. ej b node and select New
Child>JMSMessage. This opens the Create JMS Message
wizard.

Enter the name of the new JMS message. In the Name field type
Dur abl eText Message. Click Next.

Select the type of the JIMS message as Text Message from the
drop-down list. Click Finish.

Using OptimalJ: Tutorials

1-137

OptimalJd 3.1

Step 4 ? Use EJB components to produce a JMS message

You can use EJB components to generate messages and send them via
JMS destinations to the messaging system. In this step, you create an
OptimalJ domain service with a domain service operation. The domain
service results in a session component with a business method. Use the
EJB session component to publish messages to a JMS topic.

To create a JMS message producer:

1.

In the Explorer[Domain Model], right-click service node and
choose New Child>DomainService. This opens the Create
domain service wizard.

Select Do not use Vi ew on Donai nC ass for the domain
service type. Click Next.

Enter the name of the domain service, for example,

Sender Ser vi ce. Click Next.

Add a domain service operation with the name sendMessage and
return type Voi d. Add a parameter of type St ri ng and call it
nmessageCont ent . Accept the defaulti n Kind for this parameter.

Click Finish.

Choose Model>Update All Models from the OptimalJd menu
and select the appl i cat i on package, as this is the package we
want to have generated.

Switch to the Explorer[Application Model] and expand the
j ms_sender . appl i cati on. ej b node. Rename the EJB module
from ej b to ej bSender . This prevents the JMS sender and the
future JMS receiver JAR files from conflicting when both are
deployed.

Check the level of the logged information for the EJB server. To
allow the generation of logging trace information in the EJB
server's console, select menu Tools>Options.

Go to OptimalJ Configuration>Code Generation>Logging
Code.

Set the EJB Tier property to Tr ace. This creates entries in the
source code, which are printed in the EJB server's console.

1-138

Tutorials

OptimalJd 3.1

Step 5 ? Model the JMS message production

In this step, you have to model the generated session component to
produce a JMS message. The EJB session component has a list of IMS
messages that can be created from that component. This list is exposed
via the usedMessage property that indicates which JMS messages are
?used? by this component. ?Used? means in this context that this
component is responsible for the creation and sending of the messages.
For each entry in the usedMessage collection, a private Java method is
generated that has the following signature:

1| private void produce<MessageNane>(

2| Sring destinationNane,

3] A ass desti nati onType,

4| S ring used®nnecti onFactory,
5] Sring paylLoad)

6 | throws Exception;

This method is responsible for creating and sending a JMS message
<MessageName> to JNDI destination dest i nat i onNanme using a
desti nati onType. For more information, see Message production and
consumption from the OptimalJ online help.

To model the IMS message production:

1. In Explorer[Application Model], right-click the Sender Ser vi ce
session component and choose Edit from the pop-up menu. This
starts the Edit Wizard. Click Next until you reach the Edit
Produced Messages panel. Click Add and select the
Dur abl eText Message element. Press OK to add the selected
JMS message to the list of produced messages. Click Next.

2. The panel Edit Topics To Produce To contains the JMS topics to
which the IMS messages are to be sent. Add a topic. Click Add. In
the Topic field enter the INDI name for a JIMS topic, for example,
Dur abl eTopi c. Do not specify anything for the JMS topic
connection factory. This way, OptimalJ is using the default
connection factory of the integrated JMS provider?JBoss. Click
Finish.

3. In Explorer[Application Model], right-click the root package
j ms_sender and choose Generate Code from the pop-up menu.

4. You need to mount directory for the Web and EJB code.

Via the wizard, select \ Opt i mal J\ ndDur abl e\ ej bCode and
click OK.

5. For the Web tier, select \ Opt i mal J\ ndDur abl e\ webCode and
click OK.

Using OptimalJ: Tutorials

1-139

OptimalJd 3.1

6. Provide code for the message production invocation. Right-click
the Sender Ser vi ce session component and choose Edit
Generated Files from the pop-up menu. Select
Sender Ser vi ceBean. j ava. Locate the business operation
sendMessage. In the free block of the method, add the invocation
call to the private method pr oduceExanpl eMessage. Add:

1] try{

2| produceDur abl eText Message(" Dur abl eTopi ¢, Topi c. cl ass,
| "defaul t", nessageContent);

3| } catch (Exception e) {

4| logger.error("Caught " + e.getdass().toring() +"
| whi | e produci ng Dur abl eText Message, cause: "

5 + e. get Message());

611}

Note: Since we did not provide a topic connection factory, in the previous
step, we are allowed to pass 'def aul t * as the topic connection factory. In
the EJB deployment descriptors a resource reference is added that maps
'ims/default’ to the default connection factory for JBoss. This
functionality is only available when deploying on JBoss, as other
application servers not always provide a default connection factory. In
this case, free blocks in the deployment descriptors are available where
these mandatory references have to be added manually.

7. Build the code for the sender part of your application. In
Explorer[Code Model], right-click the
\ Opt i mal J\ ndDur abl e\ nodel folder and select Build All.

Step 6 ? Create a durable subscriber

The durable subscriber is modeled via the EJB message-driven
component. The message-driven component is situated in a separate
model. This is to allow the receiver part of the IMS application to be
separated physically from the sender part, when deployed.

To create a durable subscriber:

1. In the Explorer[Code Model], mount a separate folder for the
receiving part of this application. Select
\ Opt i mal J\ ndDur abl e\ Recei ve.

2. In the Explorer[Domain Model], create a new root domain model
package called j ns_r ecei ver . In the Create Model Package

1-140

Tutorials

OptimalJd 3.1

wizard, choose a three-tier structure. For the Filesystem field,
make sure you select the folder that was mounted in substep 1.
Click Finish.

3. In Explorer[Application Model], right-click the
jms_receiver.application. ej b model package and select
New Child>EJBModule. Name the new EJB module
ej bRecei ver.

4. In Explorer [Application Model], right-click the
jms_receiver.application.ejb node and select New
Child>EJBMessageDrivenComponent.

5. Enter the name of the new component. In the Name field enter
Recei ver . Click Next.

6. Enter the name and select the type of the JMS destination. For the
fields below, enter the following values:

Table 1-8 Destination name and type
Field name Value

Destination name Dur abl eTopi ¢
Destination type Topi c

Note: Enter the destination name which will be used later as a JNDI
name for IMS messages. Be aware that the Destination name is case-
sensitive.

Click Next.

7. Select Dur abl e for the delivery type. This enables the Client ID
field. Here you enter a unique identifier which the JMS Server
uses to identify this message consumer. Type Exanpl ed i ent | d.
Click Next.

8. Select the EJB module in which the EJB message-driven
component is deployed. Select the current EJB module,
ejbReceiver. Click Next.

Using OptimalJ: Tutorials 1-141

OptimalJd 3.1

9. Select the IMS messages consumed by the component. Select the
j ms_sender . application. ej b. Dur abl eText Message check

box. Click Finish.

Note: If, in the dialog, you select no JIMS messages for consumption, the
generated message-driven bean will consume all available messages

declared in the model.

10. In the Explorer[Application Model], select the package
j ms_recei ver. Go to the properties and select dependsOn. Add

the j ns_sender package and click OK.

Note the created elements in the Explorer[Application Model]
window. You should have a picture similar to the following:

Figure 1-81 Elements in the Explorer[Application Model] window

11. Generate code for the receiver part of the application. Right-click
the package j ns_recei ver. application. ej b and select
Generate Code.

1-142 Tutorials

OptimalJd 3.1

Via the wizard, select
\ Opt i mal J\ mdDur abl e\ ej bRecei veCode and click OK.
12. Build the code for the receiver part of your application. In
Explorer[Code Model], right-click the
\ Opt i mal J\ mdDur abl e\ Recei ve folder and select Build All.

Step 7 ? Test the JMS message consumption

Testing the JMS message consumption requires certain settings. The
application server (JBoss) has to be aware of the IMS destinations it
must support. The whole application starts via the Web. A hyperlink
points to the method that produces the JMS message. The EJB server
console shows the result of the message consumption. In this step, the
sender and the receiver part of the application are deployed separately.
You make the receiver part unavailable for message delivery by
undeploying it from the JMS server. Since the receiver part is developed
as a durable subscriber, the JMS message will be preserved until the
consumer is available again.

To test the JMS durable subscription in OptimalJ:

1. Enter the JNDI name for the JMS topic. On the menu, choose
Tools>Options.

2. Go to OptimalJ Configuration>Testing>JMS>Topics.

3. Right-click the Topi cs node and select Add Topic. A Topic dialog
appears.

4. Provide the name of the topic to be used in your JMS application.
Enter Dur abl eTopi c in the dialog box. Click OK.

5. In the Explorer[Code Model], mount the
\systenl j boss\ server\def aul t\ depl oy folder. The folder is
available under the folder that you selected to be your user di r in
OptimalJ. This provides you with access to the folder in which all
applications are deployed. The folder is needed to support Hot
Deployment of the receiving part of our application in JBoss.

Note: The \ syst eml j boss\ server\ def aul t\ depl oy folder does not
exist until you start the EJB server for the first time.

6. On the OptimalJ menu bar, choose Test>Start Logging Server.
7. Todeploy the sending part of your application, select Test>Start
Application Server on the OptimalJd menu. The Archive File
Selector dialog opens and offers you available JAR and WAR files

for deployment. Select the following files:

Using OptimalJ: Tutorials

1-143

OptimalJd 3.1

e \Opti mal J\ ndDur abl e\ model \ j ns_sender\ appl i cati on\ gj
b\ ej bSender. j ar

e \Opti mal J\ ndDur abl e\ nodel \ j ns_sender\ appl i cati on\ we
b\ web. war

Press OK. This action also starts the Web server.

8. Select the EJB file ej bRecei ver. j ar in the
\ Opt i mal J\ ndDur abl e\ Recei ve\jns_receiver\applicati
on\ ej b\ ej bRecei ver. j ar folder. Right-click it and select
Copy. Navigate to the mounted folder
\'systenlj boss\server\defaul t\depl oy that was mounted
above. Right-click this folder and choose Paste>Copy from the
pop-up menu. This performs Hot Deployment of the
ej bRecei ver. j ar, the output can be watched in the Output
Window[EJB Server] tab. If the deployment it successful, the
result in the output window should be similar to:

INFO [H bMbdul €] Oreating
INFO [g bMbdul €] Depl oyi ng Recei ver
INFO [H bMbdul €] Qreated

9. In the Web browser, click Mai nt enance Sender Ser vi ce. Click
sendMessage. Enter some text in the edit field, for example, A
dur abl e t ext message and press OK. You receive a notification
about the delivery of the JMS message:

Sender Ser vi cesendMessage was successf ul

10. In the OptimalJ Output Window, select the
com.compuware.log4j.LogginSocketServer - 1/0O tab.

11. Note the results. The Output
Window[com.compuware.log4j.LogginSocketServer - 1/0] shows
an output similar to:

TRACE H bTier (Receiver.java: 84)-Recei ved a Text Message
fromdestination Durabl eTopic (topic), text is: Adurable
text message

The JMS message is produced by your Sender Ser vi ce session
component and is consumed by the Recei ver via the messaging
service of JBoss.

12. To see the effect of the durable subscription you make the receiver
part of your application unavailable. In the Explorer[Code Model],
navigate to the folder
\ systenl j boss\server\def aul t\ depl oy that was mounted
above. Find the ej bRecei ver. | ar file and delete it. The Output

1-144

Tutorials

OptimalJd 3.1

Window[EJB Server] tab reports the undeployment of the
ej bRecei ver. j ar file:

I NFO [§ bMbdul €] Destroyi ng

INFO [§ bMbdul] Renove JSR 77 EIB Mdul e: j boss. nanagenent .
si ngl e: J2BEAppl i cat i on= , J2EESer ver =S ngl e, j 2eeType=E]IBVbdul e,
nane=ej bRecei ver . j ar

I NFO [§ bMbdul €] Dest royed

13. Go back to the Web browser that still points to the
Sender Ser vi ce component. Again send amessage This i s t he
actual durable nessage!.

14. Repeat substep 8 and watch the Output Window[EJB Server] tab
for output. It shows the messages being received directly after the
deployment of the ej bRecei ver. j ar has finished. The output
should be similar to:

TRACE B bTi er Recei ver. j ava: 84) - Recei ved a Text Message
fromdestination Durabl eTopic (topic), text is: Thisis
the actual durabl e nessage!

In this tutorial, you used the JMS facilities provided by OptimalJ with
the integrated JBoss application server. Note that executing this tutorial
with another application server requires some additional actions. See the
optional step in Creating message-driven components tutorial, which
gives a general advice about how to deploy durable subscribers on other
JMS providers.

Step 8 ? Test IMS message persistence

The durability is only one side of the guaranteed message delivery. Along
with durability, the IMS provider is responsible to offer a message
persistence mechanism and a storage for sent messages. Message
persistence is used when the JMS messages must not be lost in the event
of a provider failure. By default, the message persistence is switched on.
If a subscription is durable and the subscribers are not currently
connected, then the JMS message is held by the message server until
either the receiver is available, or the message expires. This also applies
to non-persistent messages.

In this step, you send a message to the EJB server. Stop the server and
restart it to observe the effect of the message persistence.

To test the message persistence

Using OptimalJ: Tutorials

1-145

OptimalJd 3.1

In the Explorer[Code Model], navigate to the folder

\ systenl j boss\server\defaul t\depl oy. Find the

ej bRecei ver. j ar file and delete it. The Output Window[EJB
Server] tab reports the undeployment of the ej bRecei ver. j ar
file.

In the Web browser, click Mai nt enance Sender Servi ce, and
click sendMessage. Enter some text in the edit field, for example,
A text message to persist and click OK.

The JMS server (JBoss) stores the sent message in a reliable
storage.

Stop JBoss server using Test>Stop Application Server menuin
OptimalJ. This way you make the sending and the receiving part
of the application unavailable.

Restart the application server by choosing Test>Start
Application Server from the OptimalJd menu. The Archive File
Selector dialog opens and offers you available JAR and WAR files
for deployment. Select the following files:

\ Opt i nal J\ ndDur abl e\ nodel \j ns_sender\ appl i cati on\]
b\ ej bSender. j ar

\ Opti nmal J\ ndDur abl e\ nodel \j ns_sender\ appl i cati on\we
b\ web. war

Press OK. This action also starts the Web server.

In the Explorer[Code Model], select the EJB file

ej bRecei ver.j ar in the

\ Opt i mal J\ mdDur abl e\ Recei ve\jns_receiver\applicati
on\ ej b\ ej bRecei ver. j ar folder. Right-click it and select
Copy. Navigate to the mounted folder

\ systenl j boss\server\def aul t\ depl oy that was mounted
above. Right-click this folder and choose Paste>Copy from the
pop-up menu. This performs Hot Deployment of the

ej bRecei ver. j ar, the output can be watched in the Output
Window[EJB Server] tab. If the deployment it successful, the
result in the output window should be similar to:

INFO [H bMbdul €] Creating
INFO [g bMbdul €] Depl oyi ng Recei ver
INFO [H bMbdul €] Oreated

6.

7.

In the OptimalJ Output Window, select the
com.compuware.log4j.LogginSocketServer - 1/0O tab.

Note the results. The Output
Window[com.compuware.log4j.LogginSocketServer - 1/0] shows
an output similar to:

1-146

Tutorials

OptimalJd 3.1

TRACE H bTier (Receiver.java: 84)-Recei ved a Text Message
fromdestination Durabl eTopic (topic), text is: Atext
nessage to persi st
The JMS message is taken from the storage and delivered to the
Recei ver via the messaging service of application server.

In this tutorial, you learned the concepts and tasks for developing
reliable message-driven application by creating durable subscribers. You
created a JMS message and a message-driven component and modeled a
JMS message production. At the end, you tested your application to
generate JMS messages and consume them in OptimalJd.

Further reading
For more information, see the documentation on Messaging.

To learn more about the EJB message-driven component, refer to the
EJB 2.0 specification, refer to EJB specification

To learn more about the Java Messaging Service, refer to Sun JMS
tutorial.

1.15 Defining presentation model extensions

In OptimalJ, the model elements Web textarea type and Web input type
are presentation model extensions allowing you to specify the format and
appearance of Web attributes in JavaServer Pages. For example, you can
set the date format or number format that is used to validate and parse
user input, or you can select which HTML type is used to represent a Web
attribute. You can also set different HTML attributes, including the CSS
style and format strings.

Prerequisites

= Familiarity with the basic development features of OptimalJ as
described in the tutorial Developing your first OptimalJ application.

= Familiarity with the concepts of Web components.

Duration
This tutorial takes approximately one hour to complete.

Using OptimalJ: Tutorials

1-147

OptimalJd 3.1

Objectives

This tutorial demonstrates how you can enhance the presentation in your
OptimalJ Web applications without having to modify the generated
JSPs.

Step 1 - Prepare the filesystem
Create three directories for the application, for example:

e \Optimal J\presentation\presentati onModel ?this directory
will hold your model definitions.

e \Optinmal J\ presentation\ present ati onWwebCode?this
directory will hold the generated Web code.

e \Optinal J\presentation\presentati onEJBCode?this
directory will hold the generated EJB code.

Step 2 - Create a new Project

To demonstrate the Web model extensions, you create a new project with
an initial three-tier structure.

Create the new project:

1. From the menu, choose Project>New OptimalJ Project. Enter
Present at i on as the Name and click Next.

2. Set the type of project to New Model. Set the Model dir to
\ Opti mal J\ presentation\presentationhWdel (the
directory you defined in Step 1) and click Next.

3. Enter present ati on in the Fully-qualified Package Name
and select Initial Structure Three Tier Application Structure.
Click Next.

4. Select Mount each filesystem yourself and click Next.

5. Inthe Include Source Code and Archives pane, accept the default
and click Finish.

Step 3 - Create a Customer class

You first need to create a domain class that contains the attributes for
which you want to define Web presentation types.

1. In the Explorer [Domain Model], expand
present ati on. donai n.

2. Right-click the class package, and select New
Child>DomaincClass.

3. Enter Cust oner in the Name field and click Next.

1-148

Tutorials

OptimalJd 3.1

4. Populate the Customer class with attributes as shown. Use the
Add button to add a new attribute.

Figure 1-82 Create the Customer class

5. Click Next.

Note: This tutorial does not require that you define an operation or that
you base this class on a supertype.

6. Click Finish.

Step 4 - Generate the application models
In this step you generate the Web model that is to be modified.

1. From the menu select Model >Update All Models.
2. Select the presentation package.
3. Click Finish.

Using OptimalJ: Tutorials 1-149

OptimalJd 3.1

At this point, if you generate the application code, including the Web code
(JSPs and Web actions), you will generate the following JSP to create or
edit customer information.

Figure 1-83 CustomerMaintChange.jsp

In this tutorial, you are going to implement the following presentation
requirements:

Contract date should be displayed using a full date format (Tuesday,
April 12, 2003).

Date of birth should be displayed using a custom date format.

Notes should be displayed using a multiple line entry field.
Password should be displayed as a password (****).

LastName should be displayed in bold red text.

1-150

Tutorials

OptimalJd 3.1

= Customerld should be validated against a regular expression ([A-
Z][A-Z][0-9][0-9][0-9][0-9])

= The fields should be reordered to provide a more usable interface
(Notes should be last).

Note: In this tutorial, we are not using the DBMS code, as we only focus
on demonstrating the possibilities offered by the Web model. The
generated EJB code is only needed in the step where you create a regular
expression. If you want to fully test the application, including data storage
and retrieval, you must create the database tables from the database
definitions, and start the database server before starting the application
server.

Step 5 - Create a Web textarea type

The text input box for the domain attribute notes is too small and does
not allow the user to scroll through the text easily.

To provide a larger field with vertical scroll bars, create a user-defined
Web textarea type:

1. In the Explorer [Application Model], expand
presentation. application.web, right-click the web model
package and choose in the menu New
Child>WEBTextareaType.

2. In the Create WEBTextareaType wizard, enter a Name for the
text area Not esText Ar ea. Set the number of columns and rows
to 6 and the number of columns to 60. Click Next.

Using OptimalJ: Tutorials

1-151

OptimalJd 3.1

Figure 1-84 Web Textarea type wizard

3. Click Next You will not define a CSS Style or Class.
4. Apply the Web textarea type to a domain attribute. Click Add,
select the domain attribute notes of Customer, click OK.

Note: Web input types and Web Textarea types can be shared among
several domain attributes.

5. Click Finish.
6. From the menu, choose Model>Update All Models, select the

presentation package and click Finish.

Note: As the Web textarea type wizard lets you apply your presentation
type to attributes in the domain class model, you need to update the Web
model to propagate the presentation type from the domain to the Web

attributes.

1-152

Tutorials

OptimalJd 3.1

Step 6 - Generate and compile the code

Each model creates a number of files (Java, JSP, XML) from the model
definitions.

To generate the application code:

1. In the menu, select Model>Generate All Code.

2. You need to mount directories for the Web and the EJB code.
Select Mount New Filesystem to assign the mount point for the
EJB code.

Select\ Opt i mal J\ present ati on\ present ati onEJBCode and
click OK.

3. Select\ Optimal J\ presentation\presentati onWwebCode
and click OK.

4. Click OK.

5. Compile the code by selecting Project>Compile Project. The
message Finished Project Presentation in the Output Window
[Compiler] confirms the successful compilation of the project.

Step 7 - Test the application
To test the application, you need to start the Web server
To start the Web server:

1. In the Explorer[Code model], right-click
Cust omrer Mai nt Change. j sp in
\ Opti mal J\ present ati on\ present ati onWwebCode and from
the menu, select Execute. The Web server starts and opens a
browser with a data-entry form.

Using OptimalJ: Tutorials 1-153

OptimalJd 3.1

Figure 1-85 The resulting page

Note: There is a default HTML Textarea type available for your attributes.
For example, in the Explorer [Application Model], you can select the Web
data attribute firstName and change the property webtype to

Dat aTypes. webDat aTypes. HTM_Text ar ea.

Note: The next time you are asked to test the application while the Web
server is still running, select the menu option Execute (Force Reload).
Using this option enables you to deploy your application without the need
for stopping the Web server. OptimalJ does this for you.

2. Close the Web browser window when you have finished testing.

1-154 Tutorials

Figure 1-86 Create Wizard

OptimalJd 3.1

Step 8 - Create a Web input type

For presentation purposes, the Customer's lastName attribute must
appear in bold, red text. To achieve this, create a user-defined Web input
type.
1. Inthe Explorer [Application Model], right-click the web model
package and choose in the menu New Child>WEBInputType.
2. In the Create WEBInputType wizard, enter RedText in the
Name field, select a Text input type and set the Size to 60. Click
Next.

Caution: The Size field is an integer that sets the display size of the input
field. It does not influence the maximum input size validation.

3. Specify the style using CSS Style col or:red; font-
wei ght : bol d and click Next.

4. Select none for the data formatting type and click Next.

5. Apply the Web input type to a domain attribute. Click Add, select
the domain attribute | ast Name of Cust oner and click OK. Click
Finish.

Using OptimalJ: Tutorials

1-155

OptimalJd 3.1

Figure 1-87 The resulting page

6. In the web model package, right-click
WEBEJBFromClassPattern and select Update Model.

7. Generate and compile the code.

8. Test the application.

In the field lastName, enter the name Smi t h.

Note: To specify the value of the mark-up type, use single quotes. For

example, font-fam | y: 'verdana'. Alternatively, use style classes
defined in a CSS.

9. Close the Web browser window when you have finished testing.

Step 9 - Define date formats

The user wants to see the Customer's contractDate in a full date format

(Tuesday, April 12, 1999). To do this, you need to create another Web
input type.

1-156

Tutorials

OptimalJd 3.1

1. In the Explorer [Application Model], right-click the web model
package and choose in the menu New Child>WEBInputType.

2. Inthe Create WEBInputType wizard, enter MyDat e in the Name

field, select the Text input type and click Next.

Click Next. You will not define a CSS Style or Class.

Select data formatting type Date/Time and click Next.

5. Select the date format DateFormat.date FULL (e.g. Tuesday
April 12, 1952). Click Next.

6. Apply the Web input type to a domain attribute. Click Add, select
the domain attribute cont r act Dat e of Cust orer and click OK.
Click Finish.

7. In the web model package, right-click
VEBEJBFr onCl assPat t er n and select Update Model.

8. Generate and compile the code.

9. Test the application.

Try to enter a contract date with a format that is different from the
example given (for example 11-10-2003) and click OK. The
application displays the message: field Customer.contractDate :
data does not conform to format set for this data type. Next, enter
a correctly formatted date (for example Monday, November 10,
2003) click OK.

hw

Figure 1-88 DateFormat.FULL data entry

10. Close the Web browser window when you have finished testing.

Step 10 - Define date format patterns

Create a more complicated entry for the date fields in the presentation
layer by defining your own format pattern. Create an Web input type to
implement a user-defined date format.

1. In the Explorer [Application Model], right-click the web model
package and choose in the menu New Child>WEBInputType.

Using OptimalJ: Tutorials 1-157

OptimalJd 3.1

E

In the Create WEBInputType wizard, enter MyCust onDat e in
the Name field, select the Text input type and click Next.
Click Next. You will not define a CSS Style or Class.

Select data formatting type Date/Time and click Next.

Select SimpleDateFormat(uses formatstring). The field
Format String becomes available. Enter your preferred date
format, for example yyyy MM d (EE) HH nm Click Next.

Note:

The SimpleDateFormat pattern represents the

java.text.SimpleDateFormat class. SimpleDateFormat is a standard
Java class for formatting and parsing dates in a locale-sensitive manner.
For more information, refer to the Java 2 Platform API Specification.

6.

Figure 1-89 SimpleDateFormat(uses formatstring)

Apply the Web input type to a domain attribute. Click Add, select
the domain attribute dat eOf Bi rt h of Cust omer and click OK.
Click Finish.

In the web model package, right-click
VEBEJBFr onCl assPat t er n and select Update Model.
Generate and compile the code.

Test the application.

Try to enter a date of birth with a format that is different from the
example given (for example 10-03-1957) and click OK. The
application displays the message: field Customer.dateOfBirth :
data does not conform to format set for this data type. Next, enter
a correctly formatted date of birth (for example 1957 10 3 (Thu)
10:30) and click OK.

10. Close the Web browser window when you have finished testing.

1-158

Tutorials

OptimalJd 3.1

Step 11 - Define password fields

Password fields in Web pages contain sensitive information. Password
field are normally presented as normal text. Create a Web input type to
implement a password field to hide the information entered in the
Customer's password field.

1. Inthe Explorer [Application Model], right-click the web model
package and choose in the menu New Child>WEBInputType.

2. In the Create WEBInputType wizard, enter MySecr et Wr d in
the Name field, select the password input type and click Next.

3. Click Next.

4. Apply the Web input type to a domain attribute. Click Add, select
the domain attribute password of Customer and click OK. Click
Finish.

5. In the web model package, right-click
VEBEJBFr onCl assPat t er n and select Update Model.

6. Generate and compile the code.

7. Test the application.

Enter text in the password field. Verify that every character you
type in the field is displayed as a *
8. Close the Web browser window when you have finished testing.

Step 12 - Validate input using regular expressions

Certain attributes must adhere to a fixed format, such as ZIP codes or car
registration numbers. The user input is checked against this format to
prevent an invalid entry in the JSP. To perform the check, you create a
regular expression defined within a business expression. The regular
expression is attached to the attribute using a domain attribute
constraint. In this tutorial, the customerld field must conform to the
format of two capital letters followed by four numbers, for example,
VN3161.
1. In the Explorer [Application Model], right-click the ejb model
package and select New Child>BusinessExpressionLibrary.
2. Enter nyexpressi onl i b in the Name field and click Next.
3. Add a business expression to the business expression library as
shown:

Using OptimalJ: Tutorials 1-159

OptimalJd 3.1

Figure 1-90 Create BusinessExpression Wizard

Click Finish.

4. In the Explorer [Application Model], select the
val i dCust orrer | d business expression you just created. In the
Properties Window, click the body property browse button to
display the Property Editor. Select Language

1-160 Tutorials

OptimalJd 3.1

RegularExpression and in the Body field you remove the
comment and enter N[A-Z][A-Z][0-9][0-9][0-9][0-9]$.

Note: The caret (©) sigh marks the start of the expression string, and the
dollar ($) sign the end of the string. Regular expressions consist of digits
[0-9], uppercase characters [A-Z], lowercase characters [a-Z],
combinations [A-Za-z].

10.

11.

12.

Click OK.

In the Explorer [Domain Model], right-click the domain class
Cust omrer and choose in the menu New
Child>DomainAttributeConstraint. In the wizard, enter the
Name checkl d and click Next.

Click Next. You will not define a constraint range.
Click Add, this automatically selects the business expression you
have created. Click Finish.

Select the customerld domain attribute, and in the Properties
window change the attributeConstraint property so that it
references the checkld domain attribute constraint.

On the menu, choose Model >Update All Models, select
presentation and click Finish.

In the Explorer [Application Model], expand the node
present ation. application. ej b and select the ejb module.
In the Properties, select the containedFiles and add /
present ati on/ Myexpressi onlib. cl ass.

Note: The class file for the business expression library starts with
uppercase so enter the name accordingly.

13.
14.

15.

Generate and compile the code.

Test the application. From the menu, select Test>Start
Application Server.

Enter a value in the customerld field that does not comply to the
format as described in the body of the business expression. The
application displays the message field Customer.customerld : data
is out of range. Verify that an expression like VN3161 is accepted.
Close the Web browser window when you have finished testing.

Using OptimalJ: Tutorials

1-161

OptimalJd 3.1

Step 13 - Reorder the fields

Reordering the fields can be done in the domain model, in which case the
order is propagated to the other models, or it can be done in the
application models (for example the Web model).

1.

In the Explorer [Application Model], expand the nodes
presentation. application.web. cust oner, right-click the
Cust omer Web data class and select Properties.

In the Properties window, click inside the feature property field
and then click Browse.

The feature Property Editor lets you reorder the attributes. Select
notes and click Down until the notes attribute appears last in the
list.

Use the Up and Down buttons to reorder the attributes according
to the following list:

customerld
firstName
lastName
dateOfBirth
contractDate
password
notes

Click OK and close the Properties window.
Generate and compile the code.
Test the application.

1-162

Tutorials

Figure 1-91 Changed order of input fields

OptimalJd 3.1

Close the Web browser window when you have finished testing.
Stop the application server by selecting Test>Stop Application
Server from the menu. OptimalJ stops the application server and
the Web server.

Using OptimalJ: Tutorials

1-163

OptimalJd 3.1

Web presentation types allow you to specify the format and appearance
of attributes in the HTML generated by the JavaServer Pages. You can
set the date format or number format that is used to validate and parse
user input. You can select which HTML type is used to represent an
attribute. They also set some HTML attributes, including the CSS style.
The maximum length of an attribute can be specified in the domain, EJB
and Web model. OptimalJ supports reuse of presentation types and
consistency of the presentation types that are used for Web data
attributes that are based on the same model domain attribute.

Note: For more information, refer to the Java 2 Platform API
Specification: DateFormat, SimpleDateFormat, NumberFormat,
DecimalFormat, Jakarta Regular Expression.

Further reading

For more information on customizing the Web user interface, see also
Defining Web input types and other related documentation topics.

1.16 Integrating with CORBA

This tutorial shows you how to integrate a CORBA IDL definition into
your OptimalJ environment, using a simple CORBA implementation. An
IDL file called account . i dl is provided, which describes the interfaces
of an account component that can be used to deposit and withdraw
amounts in an account.

Prerequisites
Before starting this tutorial, you must have Sun JDK 1.4 installed.

Duration
This tutorial takes approximately one hour to complete.

Objectives

After completing this tutorial, you should understand how to integrate a
CORBA component in your OptimalJ application.

1-164

Tutorials

OptimalJd 3.1

Step 1 ? Prepare the filesystem

During the course of this tutorial, you define models and generate EJB
and Web code. This information should be stored in separate directories
and mounted for your project.

1. Create a new directory for the example; for example:
\ Opti mal J\ cor bal nt egrati on.
2. In this directory, create three subdirectories:

e \Optimal J\ corbal nt egrati on\ cor bavbdel
< \Optimal J\ corbal nt egrati on\ corbaEj bCode
e \Optimal J\ corbal nt egrati on\ corbaWwebCode

Step 2 ? Create a project

This tutorial requires that you create a model package with the name
account .

To create a new project:

1. Choose Project>New OptimalJ Project. Set the project name
to cor bal nt egr ati on and click Next.

2. Select New Model as the project type and specify the directory
\ Opt i mal J\ cor bal nt egrati on\ cor bavbdel in the Model
dir field.

Click Next.

3. Enter account as the Fully-qualified package name and
choose Three Tier Application Structure with
I nt egrati on as the Initial Structure. Click Next.

Note: You MUST use these values. The CORBA sample used for this
tutorial depends on this package structure.

4. Choose Mount each filesystem yourself and click Next.

5. Ensure that all check boxes are cleared and click Finish. This
creates packages for the domain, application, and integration
models. Your start environment should look like this:

Using OptimalJ: Tutorials

1-165

OptimalJd 3.1

Figure 1-92 Start environment

6.

7.

Choose File>Mount Filesystem. In the wizard, select Local
Directory, and select

\ Opt i mal J\ cor bal nt egrati on\ cor baEj bCode. Click Finish.
Repeat substep 3. to mount the Web code directory

\ Opt i mal J\ cor bal nt egr ati on\ cor baWwebCode.

Step 3 ? Import an IDL file

In the course of importing the CORBA IDL file, you create a CORBA
client module.

To import the sample IDL file:

1.

2.

Choose Model>Import Model>Import CORBA IDL from File
to start the import wizard.

In the IDL Filename field, select the file

User Di rect ory\ sanpl eproj ect s\i nt egrati on\ corba\si m
pl econnect or\ account .idl .

This directory is located in the user directory. On Windows, this is
C.\Docunents and Settings\User\.Optinal J-

Edi ti on\ 3. 1 by default; on UNIX, it is $HOVE.

The fields Additional include directories and Additional
defines are optional. Leave these three fields blank and click
Next.

(The import facility reads the IDL file from the file system and
deals with preprocessing directives such as #i ncl udes and
#def i nes. If you need this for importing your own IDL file, enter
a semicolon-separated list of #i ncl ude directories and a
semicolon-separated list of definitions in the respective fields.)
Select account . i nt egrati on. cor ba as the CORBA package
for import and click Next.

1-166

Tutorials

o

OptimalJd 3.1

Click Create New. This starts a separate wizard for creating a
new CORBA client module.

Select account . i nt egrati on. cor ba and click Next.

Accept the default name (CORBACI i ent Modul e) and click Finish.
Select the CORBACI i ent Mbdul e and click Finish.

Your tree now looks like this:

Figure 1-93 After importing the IDL file

Step 4 ? Generate domain and application models

By generating an EJB model based on the integration model, you can
generate a session bean (and related code) to serve as a wrapper for the
connector client code. Although you can generate the EJB model directly
from the integration model, it is better to first generate a domain model.
This enables you to generate a Web model that can be used to create a
user interface for the CORBA component.

1.

2.

E

Choose Model>Generate Model>Generate Domain Models
>Generate Domain from Corba to start the wizard.

Select acount . i nt egrati on. cor ba as the Corba package and
click Next.

Select account.domain as the domain model and click Finish.
Choose Model>Update Models.

Selectaccount . appl i cat i on as the top-level package to update
and click Finish.

Using OptimalJ: Tutorials

1-167

OptimalJd 3.1

Step 5 ? Generate and compile code

After generating the EJB and Web models, you can generate code for the
application and integration models.

To generate the code:

1. Choose Model>Generate All Code

2. When prompted for the location of generated code modules, choose
\ Opt i mal J\ cor bal nt egr ati on\ cor baEj bCode for the EJB
module code and
\ Opt i mal J\ cor bal nt egr at i on\ cor baWwebCode for the Web
module code.

3. To view the structure of the generated code, use the Explorer
[Code Model].
For example, in the directory containing the integration models
and code, navigate to
account . i ntegration. corba. CORBAC i ent Modul e. Note the
Java file Account Pr oxy. j ava.
Open the subfolder st ubs. This directory contains CORBA stubs
as generated by the i dl j utility.

1-168

Tutorials

OptimalJd 3.1

Figure 1-94 Code generated from CORBACIlientModule

4. Choose Project>Compile Project to compile all code.
5. To view the compiled code, use the Explorer [Code Model].
Expand the ej b node. The tree looks like this:

Using OptimalJ: Tutorials 1-169

OptimalJd 3.1

Figure 1-95 Generated code from EJB model

Step 6 ? Build the CORBA server

So that you can test that the CORBA connector works, source files are
provided for the account CORBA server. You can build and run this
component locally and call it from a generated Web interface. The rest of
this tutorial describes how you can do this.

1. Open a command prompt window (do not close OptimalJ) and
navigate to
User Di rect ory\ sanpl eproj ect s\i ntegrati on\ corba\sim
pl eproj ect.

2. From the command line, run the following program:

idj -fal account.idl

This generates all skeletons for the CORBA server.

1-170

Tutorials

OptimalJd 3.1

Figure 1-96 Files generated for the CORBA Server

Note: Thei dl j . exe file is located in the \ bi n directory of your JDK
installation directory.

3. Return to OptimalJ. Choose File>Mount Filesystem. In the
wizard, select Local Directory, select
User Di rect ory\ sanpl eproj ect s\i nt egrati on\ corba\si m
pl econnect or, and click Finish.
4. In Explorer [Code Model], navigate to
sanpl eproj ects. i ntegration. corba. si npl econnector.
5. Right-click the file Account Ser ver . j ava and choose Compile.

Step 7 ? Start the CORBA server

1. In the command prompt window, run the t naneser v. exe
program by entering:

t naneserv

Using OptimalJ: Tutorials

1-171

OptimalJd 3.1

This starts the CosNaming name service.

Note: Thet nameser v. exe fileis located in the bin directory of your JIDK
installation directory.

2. Return to OptimalJ. In the Explorer [Code model] and navigate to
sanpl eproj ects. i ntegration. corba. si npl econnector.
3. Right-click Account Ser ver . j ava and choose Execute.

Step 8 ? Call the CORBA component

Using the generated Web interface for the session bean, invokes the
account CORBA connector.

1. Choose Test>Start Application Server. Ensure that
..\application\ejb\ejb.jar isselected in the Archive File
Selector window and press OK. Wait for the server to start. This
starts the Web server and browser, displaying the Main Menu.

2. Click the link Maintenance Account. The displayed page shows
the operations available on the account CORBA component. There
is no stored data, but if you execute the functions in the following
order, you can see that the CORBA component is being called. To
execute an operation. click on the appropriate link in the menu
bar:

e setinfo

e getinfo

e deposit

= get Bal ance
e withdraw
= get Bal ance

Alternatively, instead of using a Web interface, you can use an RMI client
component. To use this:

1. In the Explorer [Code Model], go to
\ sanpl eproj ect s\i nt egrati on\ cor ba\ si npl econnect or.

2. Right-click Account d i ent . j ava and choose Compile.
Right-click Account Cl i ent . j ava again and choose Execute.

4. The output window shows the AccountServer - 10 and the
AccountClient - 10.

w

In this tutorial, you defined and used a CORBA integration model in
OptimalJ.

1-172

Tutorials

OptimalJd 3.1

Further reading

For more information, see the documentation on Integrating with
CORBA.

1.17 Integrating with CICS COBOL via JCA

This tutorial shows how to integrate a CICS COBOL program into
OptimalJ using the Java Connector Architecture (JCA). The following
files are provided for this tutorial:

< Asimple COBOL program called SHIPDATJ. This program takes a
date as input, adds 7 days to it, and returns the result.

= Asample main class to show how the COBOL program can be invoked
from any Java class.

< A sample RMI client class to show how to invoke the generated
session bean.

Prerequisites
Before starting this tutorial, you need to:

< Have an installed CICS region of a version supported by your CICS
Transaction Gateway installation

= Ensure that the IBM CICS Transaction Gateway Version 4 or above
is installed. It is required for connection to CICS.

= You also need the file ci cseci . rar, which is not available in the
OptimalJ installation kit. The file can be found in the depl oyabl e
directory of the CICS Transaction Gateway installation.

Duration
This tutorial takes approximately one hour to complete.

Objectives
In this tutorial, you learn how to:.

= Install a JCA resource adapter in OptimalJ
= Define a connection factory for the resource adapter

Using OptimalJ: Tutorials

1-173

OptimalJd 3.1

< Import a CICS COBOL program into OptimalJ

= Generate a JCA component class and session bean for it, and use the
generated JCA component to invoke the CICS program

Step 1 ? Prepare the mainframe COBOL program

If the SHIPDATJ program is already available in your CICS system you
can skip this step. See your CICS systems programmer for assistance
with these tasks.

1.

2.

Upload the shi pdatj . cbl program to a source data set on the
mainframe.

Compile the program and place the resulting load module in a
data set referenced by the DFHRPL DD statement of the CICS
region.

Use CEDA to define the SHIPDATJ program and install the
definition.

Step 2 ? Prepare the file system

During the course of this tutorial, you define models and generate EJB
and Web code. This information should be stored in separate directories
and mounted for your project.

1.

2.

Create a new directory, for example:
\ Opti mal J\ cobol I nt egrati on.
In this directory, create three subdirectories:

\ Opt i mal J\ cobol I nt egrati on\ shi pci csMdel s
\ Opt i mal J\ cobol I nt egrati on\ shi pci csgj bCode
\ Opt i mal J\ cobol I nt egrati on\ shi pci csWebCode

Step 3 ? Create new OptimalJ project

Create a new OptimalJ project called shi pci cs.

1.

2.

Choose Project>New OptimalJ Project. Set the project name
to shi pci cs and click Next

Select New Model as the project type and specify the directory
\ Opt i mal J\ cobol I nt egrati on\ shi pci csMdel s in the
Model dir field.

Enter shi pci cs as the Fully-qualified package name and
choose Three Tier Application Structure with

I nt egrati on as the Initial Structure. Click Next.

Choose Mount each filesystem yourself and click Next.

1-174

Tutorials

OptimalJd 3.1

5. Click Finish. This mounts the
\ Opt i mal J\ cobol I nt egrati on\ shi pci csvbdel s directory
and creates packages for the domain, application, and integration
models there.

6. Mount the directories to contain the generated EJB and Web code
(\ Opt i mal J\ cobol I nt egrati on\ shi pci csEj bCode and
\ Opt i mal J\ cobol I nt egrati on\ shi pci csWebCode).

Choose File>Mount Filesystem. In the wizard, select Local
Directory, and select the directory to mount. Click Finish.

Step 4 ? Install the resource adaptor

You need to install the CICS ECI resource adapter in the OptimalJ
environment.

1. Choose Deploy> Install JCA Resource Adapter.

2. Inthe Resource Adapter Filename field, enter the name of the
RAR file containing the resource adapter (or browse to locate the
RAR file). The ECI resource adapter is located in the file
ci cseci . rar in the depl oyabl e directory of your IBM CICS
Transaction Gateway installation.

3. Click Finish to install the resource adapter. This copies the
ci cseci . rar file to the r esour ce directory in your user
directory. It also unpacks the file and mounts any jar files within
as file systems.

Figure 1-97 Mounted directories and jar files

Step 5 ? Define a CICS ECI connection factory

The JCA component model element created by importing a COBOL
program references a connection factory definition. This allows the
definition to be used in the generated code and in configuring the EJB
server.

Using OptimalJ: Tutorials

1-175

OptimalJd 3.1

. Choose Tools>Options to display the Options panel. Expand the

nodes OptimalJ Configuration>Code Generation>JCA
Settings.

Right-click the Connection Factories node and choose Add
ECIResourceAdapter.

Enter ci cseci rar as the Connection Factory name. This is

the name of the definition and does not have to match the APPLID

of the CICS region. Click OK.

. Select the connection factory you just created. If not open already,

display the properties. The default properties are automatically
supplied.

Fill in the relevant properties as follows, and close the Options
panel:

1-176

Tutorials

OptimalJd 3.1

Table 1-9 Connection factory properties
Property Description

ConnectionURL Address of the CICS Transaction Gateway, for
example, t cp: / / myconpany. com
PortNumber Port used by the Gateway (IBM default is 2006)

ServerName Server name for the CICS region (APPLID). This field
is case-sensitive.

Figure 1-98 Connection factory properties for CICS ECI resource adaptor

For more information on these settings, see Define a connection
factory.

Using OptimalJ: Tutorials 1-177

OptimalJd 3.1

Step 6 ? Import the COBOL program

1.

2.
3.

4.

5.

Choose Model>Import Model>Import COBOL from File to
start the COBOL import wizard.

Selecti nt egrati on. j ca and click Next.

Select Import a CICS Program and click Next.

Select shi pdat j . cbl program. This file is located in a
subdirectory of your user directory:

User Di rect ory\ sanpl eproj ects\i ntegrati on\jca\cics\
shi pdat e\ . The default location of the user directory on Windows
is C.:\ Docunents and Settings\User\.QOptinal J-

Edi tion\ 3. 1; on UNIX, it is SHOVE.

In the JCA Connection Factory field, select the ECI resource
adaptor factory you defined earlier.

Click Finish. Your tree looks like this:

Figure 1-99 Integration model for CICS COBOL

For a description of the integration model elements and how they are
mapped from CICS COBOL, see Structure of JCA integration model
(COBOL).

1-178

Tutorials

OptimalJd 3.1

Step 7 ? Generate domain and EJB models from integration model

By generating a domain model based on the integration model, you can
generate an EJB model including a session bean (and related code) to
serve as a wrapper for the JCA component client code and a Web front-
end to invoke the session bean.

To generate the domain model and application models from the
integration model:

1. Choose Model>Generate Model>Generate Domain
Models>Generate Domain from JCA to start the wizard.

2. Inthewizard, select shi pci cs. i ntegrati on.j caasthesource
and shi pci cs. domai n as the target domain model. Accept the
default values on the last pane and click Finish.

3. Choose Model>Update All Models to generate the EJB and Web
models from the domain model.

4. Inthe wizard select shi pci cs as the top model package and click
Finish.

The EJB and Web models now look like this:

Figure 1-100 EJB and Web application models

Step 8 ? Generate and compile the JCA component code

1. Right-click the shi pci cs package and choose Generate Code.
2. When prompted for the location of generated code modules, choose
Mount each filesystem yourself and click OK.

Using OptimalJ: Tutorials 1-179

OptimalJd 3.1

3. When prompted for the EJB module code location, choose
\ Opt i mal J\ cobol I nt egrati on\ shi pci csgj bCode. When
prompted for the Web module code location, choose
\ Opt i mal J\ cobol I nt egrati on\ shi pci csWebCode.

4. Choose Project>Compile Projectto compile the code.

Figure 1-101 Code model

The jca package now contains a Shi pdat j JCAConponent . j ava source
file and arecor dshi pdat] package directory. The recordshipdatj
package contains a Df hconmar ea. j ava class. The
ShipdatjJCAComponent class contains code to invoke the JCA
interactions defined in the model. The JCA component class can be used
as a normal class to invoke the SHIPDATJ CICS COBOL program.

In the ejb package, you have a Shi pdat j Bean. j ava and other files,
defining a session bean. The session bean uses the JCA component class
in the jca package to invoke the shipdatj CICS COBOL program.

1-180 Tutorials

OptimalJd 3.1

In the web package, you have forms, actions and other files, defining a
web front end. The web front end uses the session bean in the ejb package
to invoke the SHIPDATJ CICS COBOL program.

Step 9 ? Create the JCA component test program

The JCA component test program uses the generated JCA component in
the jca package to invoke the SHIPDATJ COBOL program. Steps 10 and
11 are optional, but provide an easy environment in which to debug the
generated component. This can be helpful in diagnosing problems when
the CICS program is not being executed.

1. Mount the directory User Di r\ sanpl eproj ect s\.

2. In the Explorer [Code Model], copy
i ntegration\jca\cics\shipdate\ Shi pdat eNonManagedJC
ATest . j ava from this directory to the shi pci cs package in
directory \ Opt i nal J\ cobol | nt egrati on\ shi pci cshvbdel s.

3. If your CICS region uses a code page other than the default
Cp1140 (compatible with EBCDIC 037), open the file in the
OptimalJ editor and change the encoding defined by the variable
characterEncoding. (See the character encoding sample available
in the directory char act er encodi ng for additional information.)

4. Save your changes and compile the
Shi pdat eNonManagedJCATest source.

Step 10 ? Test the JCA component

1. In the Explorer [Code Model], navigate to the folder
\ Opti mal J\ cobol | nt egrati on\ shi pci csMddel s\ shi pci cs

2. Right-click the file Shi pdat eNonManagedJCATest . j ava and
choose Execute.
3. The Output Window displays:

V¢l cone to the (ptinal Delivery Shipping Systen
Your order date is Gt 5 2001

M ease wait while we cal cul ate your shipping date. ..
Your order will ship on Gt 12, 2001

Step 11 ? Test the session bean

You can use the generated Web application to invoke the JCA component
via the session bean generated from the EJB model.

Using OptimalJ: Tutorials 1-181

OptimalJd 3.1

1. Choose Test>Start Application Server. Ensure that
..\application\ejb\ejb.jar isselected in the Archive File
Selector window and press OK. Wait for the server to start. This
starts the Web server and browser, displaying the Main Menu.

2. Click Maintenance Shipdatj;.

Click shipdatj.

4. Enter the day, month, and year of the order date and click OK.
The page redisplays with a ship date that is 7 days after the
entered order date.

w

Instead of using the Web application, you can use the supplied RMI test
program. This program uses the session bean, generated from the
EJBSessionComponent, to invoke the generated JCA component, which
in turn invokes the SHIPDATJ COBOL program.

Create the test program and test it:

1.

In the Explorer [Code Model], copy the file

Shi pdat eBeanTest . j ava

from\ sanpl eproj ects\integration\jca\cics\shipdate to
the \ Opt i mal J\ cobol I nt egrati on\ shi pci csMbdel s directory.

Right-click Shi pdat eBeanTest . j ava and choose Compile.

Choose Test>Start Application Server. Ensure that
..\application\ejb\ejb.jar isselected in the Archive File
Selector window and press OK. Wait for the server to start. This
starts the Web server and browser, displaying the Main Menu.

Right-click Shi pdat eBeanTest and choose Execute.
The Output Window should display
Wl cone to the (ptinal Delivery Shipping Systent
Your order date is Gt 5 2001
P ease wait while we cal cul ate your shipping date...
Your order will ship on Gt 12, 2001
Common errors are:
java.io. | Gexception: Shipstat JCAGonnection. shipstat : Bxception
executing interaction:
j avax. resour ce. spi . Gonmixcept i on: CT®P630E | CExcept i on
occurred in communi cation wth ACS:
linked exception : java.io.l(Exception: GQA6651E Lhable
to connect to the Gat eway.

[address = i bni. nyconpany. com port = 2006]
[j ava. net. hknownHbst Except i on:

1-182

Tutorials

OptimalJd 3.1

i bni. nyconpany. conj

The JCA component was unable to connect to the specified host
(ibm1.mycompany.com). Check the ConnectionURL setting in the
Options panel.

java.io. | (Bxception: Shipstat JCAGonnection. shipstat : Bxception
executing interaction:
j avax. resour ce. spi . Conmixcept i on: CTG630E | CExcept i on
occurred in communi cation wth ACS:
linked exception : java.io.l(Exception: GQO6651E Lhable
to connect to the Gateway.
[address = cwOl. conpuvare.com port = 2006] [j ava. net. Gonnect Excepti on:
nnection refused: connect]
The JCA component was unable to connect to the CICS Transaction
Gateway on the specified port (2006). Make sure the gateway has

been started and that the ConnectionURL and PortNumber specified
in the Options panel are correct.

java.io. | Gexception: Shipstat JCAGonnection. shipstat : Bxception
executing interaction:
j avax. resour ce. spi . Gnmixcept i on: CT®631E Eror occurred
during interaction wth ACS
BEror Gode=EQ _ERRNOACS
The gateway was unable to connect to the CICS region. Make sure the
name specified in the ServerName field in the Connection Factory

settings panel matches a server name defined to the CICS
Transaction gateway.

Messages beginning with CCL or CTG and return codes beginning
with ECI_ originate in the CICS Transaction Gateway. See the
gateway documentation for further information.

In this tutorial you have integrated a sample CICS COBOL program with
an OptimalJ application.

A second sample, shipstat, is available in the directory

User Di r\ sanpl eproj ects\integration\jca\cics\shipstat\.
The steps for this example are available in the OptimalJ scenarios.
Choose Scenarios>Integrating with CICS.

Further reading

For more information, see the documentation on Integrating with JCA
and the CICS Transaction Gateway documentation.

Using OptimalJ: Tutorials

1-183

OptimalJd 3.1

1.18 Integrating with CICS COBOL via JMS

This tutorial shows how to integrate a CICS COBOL program into
OptimalJ using the Java Messaging Service (JMS) and WebSphere MQ.

Note: The purpose of this tutorial is to help you understand the message
bridge support. Although messaging is typically used for a loosely-coupled
solution, the example shows a tightly-coupled use of messaging. You
should consider using JCA for tightly-coupled interaction with CICS.

The following files are provided for this tutorial:

< A simple COBOL program called SHIPDATJ. This program takes a
date as input, adds 7 days to it, and returns the result.

= A sample client class to show how to invoke the generated session
bean and receive the message sent by the generated message driven
bean.

Prerequisites
Before starting this tutorial, you need to:

= Ensure an installed CICS region is configured to use the WebSphere
MQ CICS Bridge.

« Determine the name of the bridge queue defined to the region, as well
as the queue manager name, host name and port number.

= Determine the name a queue where the bridge will write the reply
message.

Duration
This tutorial takes approximately one hour to complete.

Objectives
In this tutorial, you learn how to:

= Install WebSphereMQ Classes for JMS into OptimalJ.

= Define a connection factory and a queue for WebSphere MQ.
< Import a CICS COBOL program.

= Define a MessageBridgeMessage.

1-184 Tutorials

OptimalJd 3.1

= Define EJB an EJB session component and JMS message
components.

= Generate code from the EJB and message bridge models.

= Use the generated code to invoke the CICS program.

Step 1 ? Prepare the mainframe COBOL program

If the SHIPDATJ program is already available in your CICS system you
can skip this step. See your CICS systems programmer for assistance
with these tasks.

1. Upload the shi pdatj . cbl program to a source data set on the
mainframe. This program can be found in
Your User Di r\ sanpl eproj ects\integration\jca\cics\sh
i pdate

2. Compile the program and place the resulting load module in a
data set referenced by the DFHRPL DD statement of the CICS
region.

3. Use CEDA to define the SHIPDATJ program and install the
definition.

Step 2 ? Prepare the file system

During the course of this tutorial, you define models and generate EJB
and Web code. This information should be stored in separate directories
and mounted for your project.

1. Create a new directory, for example:
\ Opt i mal J\ messagebri dge.
2. In this directory, create two subdirectories:

e \cicsbridgeMdel
e \cicsbridgeEj bCode

Step 3 ? Create new OptimalJ project
Create a new OptimalJ project called ci csbri dge.

1. Choose Project>New OptimalJ Project. Set the project name
to ci csbri dge and click Next

2. Select New Model as the project type and specify the directory
\ Opti mal J\ messageBri dge\ ci csbri dgeMbdel in the Model
dir field.

3. Enterci csbri dge as the Fully-qualified package name and
choose Three Tier Application Structure with
I nt egrati on as the Initial Structure. Click Next.

Using OptimalJ: Tutorials

1-185

OptimalJd 3.1

4,
5.

Choose Mount each filesystem yourself and click Next.
Click Finish. This mounts the

\ Opt i mal J\ messageBri dge\ ci csbri dgeMbdel directory and
creates packages for the domain, application, and integration
models there.

Mount the \ Opt i nal J\ nessageBri dge\ ci csbri dgeEj bCode
directory to contain the generated EJB code.

Choose File>Mount Filesystem. In the wizard, select Local
Directory, and select the directory to mount. Click Finish.

Step 4 ? Install the WSMQ Classes for JMS in OptimalJ

The WSMQ Classes for JMS are included as part of WebSphereMQ. They
can also be downloaded as part of SupportPac MA88. The JAR files are
in the | i b directory of your WebSphereMQ installation.

1.
2.

Choose Deploy>Install WSMQ Jar Files

In the WSMQ Jar Directory field, enter the path to the\l i b
directory in your WSMQ installation or other location where the
JAR files are located.

Click Finish to install the jar files.

Step 5 ? Define a WSMQ Queue connection factory

Create a WSMQ Queue connection factory definition. This is used in the
generated code and in configuring the EJB server.

Later in this tutorial, you will create an EJB session component and
message-driven component model elements that reference this
definition.

1.

2.

Choose Tools>Options to display the Options panel. Expand the
nodes OptimalJ Configuration>Testing>JMS.

Right-click the WSMQ Queue Connection Factories node and
choose Add WSMQ Queue Connection Factory.

Enter wsngqcf as the name for the connection factory. This name
is required to use the WebSphere MQ configuration in the internal
JBoss in OptimalJ. Click OK.

Select the connection factory you just created. If not open already,
display the properties. The default properties are automatically
supplied.

Fill in the relevant properties as follows, and close the Options
panel:

1-186

Tutorials

OptimalJd 3.1

Table 1-10 WSMQ Queue Connection Factory properties

Property Description

ChannelName The channel name used to communicate with the server, for example,
SYSTEM DEF. SVRCONN. This field is case-sensitive.

HostName Address of the queue manager, for example, myconpany. com

Password Can be used to provide a password to WSMQ if required.

Port Port used by the queue manager (IBM default is 1414).

QueueManagerName Name of the queue manager, for example M630. This field is case-
sensitive.

User Can be used to provide a user ID to WSMQ if required.

Figure 1-102 Properties for WSMQ Queue Connection Factory

Step 6 ? Define WSMQ Queues

Define two WSMQ queues?one defined to the CICS region, which will
receive a CICS Bridge message, and one where the CICS Bridge will send
the response.

Using OptimalJ: Tutorials 1-187

OptimalJd 3.1

The EJB session component (which you create in step 14) sends a CICS
Bridge message to a WSMQ queue defined to the CICS region. This
message contains the name of a reply-to queue where the CICS Bridge
sends the response.

The EJB message-driven component (which you create in step 12)
processes messages from the reply-to queue.

1. Right-click the WSMQ Queues node in the Options panel and
choose Add WSMQ Queue from the pop-up menu.

2. Enter the name of the bridge queue as defined to the CICS region,
for example Cl CS. BRI DGE. QUEUE. Note that queue names are
case sensitive. Click OK.

3. Select the queue you just created. If not open already, display the
properties. The default properties are automatically supplied.

4. Fill in the relevant properties as follows, and close the Options
panel:

1-188 Tutorials

OptimalJd 3.1

Table 1-11 WSMQ Queue properties

Property Description

CCsID Character set to be used to encode text strings in
messages sent to this destination.

Encoding Specifies the encoding to be used for numeric
fields in messages sent to this destination.

QueueManagerName Name of the queue manager where this queue is
defined, for example MMQM This field is case-
sensitive.

UseRFH2 Defines whether messages sent to the queue

should contain a version 2 rules and formatting
header. Set to f al se for messages intended for
the WSMQ CICS Bridge.

Figure 1-103 Properties for WSMQ Queue Connection Factory

5. Repeat the steps above to define the reply-to queue. The reply-to
gueue must be a different queue (for example,

Using OptimalJ: Tutorials

1-189

OptimalJd 3.1

Cl CS. BRI DGE. REPLY. QUEUE) from the bridge queue, but must be
defined in the same queue manager.

Step 7 ? Define a IMS Queue connection factory

Define a connection factory for the default JMS provider. The connection
factory is used to send a message back to the sample client.

A message-driven component model element (which you create in Step
12) references this connection factory definition. The definition is used in
the generated code and in configuring the EJB server.

1. Right-click the Queue Connection Factories node in the
Options panel and choose Add Queue Connection Factory.

2. Enterclient qcf as the name for the connection factory. This
name is required because the sample client code refers to this
name. Click OK.

Step 87 Define a JMS Queue

In this step, you define a queue for the default IMS provider. A message-
driven bean sends a message to this queue when it receives the reply-to
message from the CICS bridge. The sample client reads messages from
this queue.

A message-driven component model element (which you will create in
Step 12) references this queue. The queue is used in the generated code
and in configuring the EJB server.

1. Right-click the Queue node in the Options panel and choose Add
Queue.

2. Entercl i ent g as the name for the connection factory. This name
is required because the sample client code refers to this name.
Click OK.

3. Click Close.

Step 9 ? Import the COBOL program

Importing a COBOL program into the message bridge integration model
creates a COBOLSchema in the message bridge model.

1. Choose Model>Import Model>Import COBOL from File to
start the COBOL import wizard.

2. Selectintegration. mnessagebri dge and click Next.

3. Select shi pdatj.cbl program. This file is located in a
subdirectory of your user directory:
User Di rect ory\ sanpl eproj ects\i ntegrati on\jca\cics\

1-190

Tutorials

4,

OptimalJd 3.1

shi pdat e\ . The default location of the user directory on Windows
is C:\ Docunents and Settings\User\.Optimal J-

Edi tion\ 3. 1; on UNIX, it is $HOVE.

Click Finish. Your tree looks like this:

Figure 1-104 Message Bridge model for CICS COBOL

For a description of the integration model elements and how they are
mapped from CICS COBOL, see Structure of JCA integration model
(COBOL).

Step 10 ? Create a MessageBridgeMessage

To complete the message bridge integration model, you need to define a
MessageBridgeModule and MessageBridgeMessage. The
MessageBridgeModule specifies the message bridge components that
will be grouped in a deployable unit, and the MessageBridgeMessage is
one of those components, representing the payload of a IMSMessage.

1.

o

Right click i nt egr ati on. messagebri dge in Explorer
[Application Model] and choose New
Child>MessageBridgeMessage to start the wizard.
Name the message Shi pdat j Message and click Next.
Click Create New to start a wizard to create a new
MessageBridgeModule.

Name the module shi pdatj and click Finish.

Select the shi pdatj MessageBridgeModule and click Next.
Enter SH PDATJ as the Program Name and click Next.

Note:

This field is case-sensitive. If in doubt, use all upper case letters.

Using OptimalJ: Tutorials

1-191

OptimalJd 3.1

7. Select
i ntegration. messagebri dge. recor dshi pdatj . DFHCOMVAR
EA and click Finish. Your tree looks like this:

Figure 1-105 Message Bridge model for CICS COBOL

For a description of the integration model elements see Structure of the
Message Bridge integration model.

Step 11 ? Generate EJB model from integration model

By generating an EJB model based on the integration model, you can
generate a JIMS message that uses the MessageBridgeMessage and an
EJBStruct that represents the COMMAREA.

To generate the EJB model from the integration model:

1. Choose Model>Generate Model>Generate Application
Models>Generate EJB from MessageBridge to start the
wizard.

2. In the wizard, select
ci csbridge.integration. nessagebri dge as the source and
ci csbridge. appl i cation. ej b as the target model. Accept the
default values on the last pane and click Finish.

Your tree now looks like this:

1-192 Tutorials

OptimalJd 3.1

Figure 1-106 EJB model for CICS COBOL

Step 12 ? Set the replyTo properties on a JIMSMessage

You need to couple the IMSMessage definition with the WMSQ Queue
definition.

1. In Explorer [Application Model], select the IMSMessage
application. ej b. Shi pdatj Message.

2. Set the replyToDestination in the properties panel to the name of
the reply-to WSMQ queue defined in Step 6. For example,
Cl CS. BRI DGE. REPLY. QUEUE.

3. Set the replyToDestinationType property to Queue.

Step 13 ? Create JMSMessages for the client

1. Rightclick application. ej b in Explorer [Application Model]
and choose New Child>JMSMessage to start the wizard.

2. Name the message Shi pdat j Repl y and click Next.

3. Select Obj ect Message as the IMS Message Type and
EJBSt r uct Type as the Transported Object. Click Next.

4. Selectapplication.ejb.recordshi pdatj.Df hconmar eaand
click Finish.

5. Repeat the steps above to create a JMSMessage named
Shi pdat j Error, this time selecting Text Message as the IMS
Message Type.

Using OptimalJ: Tutorials 1-193

OptimalJd 3.1

Step 14 ? Create an EJBSessionComponent

To initiate messages to the CICS COBOL program via the message
bridge, you need to define an EJBSessionComponent.

1.

o0k wnN

10.
11.

Right click appl i cati on. ej b in Explorer [Application Model]
and choose New Child>EJBSessionComponent to start the
wizard.

Name the component Shi pdat j SB and click Next.

Select Create Without a Serving Attribute and click Next.
Click Next to accept the available interfaces and state.

Select the shi pdatj EJBModule and click Next.

Click the top Add button to create a new Business Method. Name
the method sendMessage.

Click the bottom Add button to create a new parameter. Name the
parameter i n and select

application. ejb.recordshi pdatj.Df hcomrar ea as the
Type.

Click Next to skip the Used Components panel.

Click Add to add a produced message. Select

application. ej b. Shi pdatj Message and click OK. Click
Next.

Click Next to skip the Topics to Produce To panel.

Click the top Add button to add a Queue. Name the queue the
same as the CICS bridge queue defined in Step 6. For example,
Cl CS. BRI DGE. QUEUE.

Click the bottom button to add a Queue Connection Factory. Name
the connection factory wsngqcf as defined in Step 5. Click Finish.

Step 15 ? Create an EJBMessageDrivenComponent

1.

Right click appl i cati on. ej b in Explorer [Application Model]
and choose New Child>EJBMessageDrivenComponent to
start the wizard.

Name the component Shi pdat j MB and click Next.

Enter the name of the reply-to queue defined in Step 6 and select
Queue as the Destination Type. Click Next.

Set the type of delivery to Dur abl e and click Next.

Select the shi pdatj EJBModule and click Next.

Select appl i cati on. ej b. Shi pdat j Message as the message to
consume. Click Next three times to skip the Message Selector and
Used Components panels.

1-194

Tutorials

OptimalJd 3.1

7. On the Produced Messages panel, click the Add button, select the
application. ej b. Shi pdat j Repl y message and click OK.
Repeat this step, selecting the
appl i cation. ej b. Shi pdatj Err or message. Click Next twice
to skip the Topics panel.

8. Use the Add buttons to add a queue named cl i ent g and a queue
connection factory named cl i ent gcf . Click Finish. Your tree
looks like this:

Figure 1-107 EJB application model

Step 16 ? Generate the application code
1. Right-click the ci csbri dge package Explorer [Application
Model] and choose Generate Code.

When prompted for the shipdatj module code location, choose
\ Opt i mal J\ messageBri dge\ ci csbri dgeEj bCode.

Using OptimalJ: Tutorials 1-195

OptimalJd 3.1

Figure 1-108 Code model

The messagebridge package now contains a package directory. The
recordshipdatj package contains a Df hcommar ea. j ava class that
represents the COBOL COMMAREA.

In the ejb package, you have a Shi pdat j SBBean. j ava and other files
defining a session bean. The session bean contains a helper method to
send the ShipdatjMessage, which will cause WSMQ to invoke the
SHIPDATJ CICS COBOL program.

You also have a Shi pdat j MB. j ava, defining a message-driven bean.
The message-driven bean contains an onMessage method to process the
reply-to message. It also contains helper methods to send the
ShipdatjReply and ShipdatjError messages.

1-196

Tutorials

OptimalJd 3.1

Step 17 ? Add code to free blocks and compile

The generated session bean and message-driven bean contain helper
methods to send the messages defined in the model. The session bean
contains an empty sendMessage business method. The message-driven
bean contains an onMessage method to process the received reply-to
message. You need to add code in free blocks to connect the message
production to the other methods.

1. InExplorer [Application Model] right-click the ShipdatjSB session
component and select Edit Free Blocks in Generated
Files>Business Methods>ShipdatjSBBean.java>body
(sendMessage).

2. Insert the following code at the cursor in the Source window:

try {
pr oduceshi pdat j Message(" A CS BR D&E QBEE',
Queue. cl ass, "wsnggcf"”, in);
} catch (Exception e) {
logger.error(e.toring());

Note: Replace the string Cl CS. BRI DGE. QUEUE with the name of the
bridge queue defined in Step 6.

w

Press Ctrl+S to save your changes.

4. Right-click the ShipdatjMB message driven component and select
Open ShipdatjMB.java

5. Locate the consuneShi pdat j Message method in the Source

window and find the comment Pr ocesses a successf ul

repl y. Insert the following code after the comment:

| ogger. error ("Sendi ng Shi pdatj Repl y nessage");
produceshi pdat j Repl y("clientq", Queue.class, "clientqcf",
df hcormar ea) ;

6. Find the comment Processes an unsuccessful reply and
insert the following code after it:

| ogger . error (error Message) ;
produceshi pdatj Bror("clientq", Queue.class, "clientqcf",
error Message) ;

7. Press Ctrl+S to save your changes.
8. Choose Project>Build Project.

Using OptimalJ: Tutorials

1-197

OptimalJd 3.1

Step 18 ? Create the message bridge client test program

The message bridge client test program invokes the sendMessage
method in the generated session bean to send a CICS Bridge message
requesting that the SHIPDATJ COBOL program be run. It then tries to
receive a message from the cl i ent q queue that either contains the
output COMMAREA or an error message.

1. Copy the file Shi pdat eMessageTest . j ava to the
nmessageBri dge\ ci csbri dgeEj bCode\ ci csbri dge directory
and open it in the OptimalJ editor. This file is located in the
directory
User Di rect ory\ sanpl eproj ect s\i nt egrati on\ nessagebr
i dge\ ci cs\ shi pdat e. Right-click the ci csbri dge directory
and select Refresh Folder.

2. Right-click Shi pdat eMessageTest . j ava in Explorer [Code
Model] and choose Compile.

3. Choose Test>Start Application Server. Ensure that
application\ejb\shipdatj.jar isselected in the Archive
File Selector window and click OK. Wait for the server to start.

4. Right-click Shi pdat eMessageTest and choose Execute.

5. The output window should display

V¢l cone to the (ptimal Delivery Shipping Systent
Your order date is Gt 5 2001

M ease wait while we cal cul ate your shipping date. ..
Your order w il ship on Gt 12, 2001

In this tutorial you have integrated a sample CICS COBOL program with
an OptimalJ application using JIMS and WebSphere MQ.

Further reading

For more information, see Integrating with Message Bridges and
Integrating with JCA, as well as the WebSphere MQ documentation.

1.19 Integrating with IMS COBOL

This tutorial shows you how to integrate an IMS COBOL program into
OptimalJ. The following files are provided for this tutorial:

1-198

Tutorials

OptimalJd 3.1

< A simple COBOL program called SHIPDATJ. This program takes a
date as input, adds 7 days to it, and returns the result.

= COBOL copybooks defining the input and output messages for the
IMS program.

= Asample main class to show how the COBOL program can be invoked
from any Java class.

= A sample RMI client class to show how to invoke the generated
session bean.

Prerequisites
Before starting this tutorial, ensure that the following are installed:

= IBM IMS Connector for Java 1.2.2 or above can be installed on a
variety of platforms. The IMS Connector for Java installation
includes the IMS resource adapter file i nsi co. r ar, which must be
installed in OptimalJ as described in the tutorial. This file is not part
of the OptimalJ installation kit.

= |IMS Transaction Manager and IMS Connect must be installed on the
mainframe.

These are required for the connection to IMS.

Duration
This tutorial takes approximately one hour to complete.

Obijectives
In this tutorial, you learn how to:

= Install a JCA resource adapter in OptimalJ.

= Define a connection factory for the resource adapter.

= Create the model elements to represent the IMS transaction.

« Import COBOL copybooks representing IMS messages into OptimalJ.
= Generate a JCA component class and session bean.

= Use the generated code to invoke the IMS transaction.

Step 1 ? Prepare the mainframe COBOL program

If the SHIPDATJ transaction is already available in your IMS system
you can skip this step. See your IMS systems programmer for assistance
with these tasks.

Using OptimalJ: Tutorials

1-199

OptimalJd 3.1

Upload the shipdatj.cbl program and copybooks to a source data
set on the mainframe.

Compile the program and place the resulting load module in a
data set referenced by the STEPLIB DD statement of an IMS
message processing region.

Define and generate a PSB for the program with the name
SHIPDATJ.

Perform an ACBGEN using the generated PSB.

Define the application named SHIPDATJ using the PSB, and a
transaction code SHIPDATJ.

Generate the IMS system.

Step 2 ? Prepare the file system

During the course of this tutorial, you define models and generate EJB
and Web code. This information should be stored in separate directories
and mounted for your project.

1.

2.

Create a new directory, for example:
\ Optimal J\insl ntegration.
In this directory, create three subdirectories:

\ Opti mal J\'i msl nt egration\shipi nsvbdel s
\ Opti mal J\'i msl nt egrati on\shi pi nsEj bCode
\ Opti mal J\'i nsl nt egration\shi pi nsWebCode

Step 3 ? Create a new OptimalJ project

Create a new OptimalJ project called shi ppi ng.

1.

2.

Choose Project>New OptimalJ Project. Set the project name
to shi ppi ng and click Next

Select New Model as the project type and specify the directory
\ Opti mal J\'i msl nt egration\shi pi nsvbdel s in the Model
dir field.

Enter shi pi ns as the Fully-qualified package name and
choose Three Tier Application Structure with

I nt egrati on as the Initial Structure. Click Next.

Choose Mount each filesystem yourself and click Next.
Click Finish. This mounts the

\ Opti mal J\'i nsl nt egrati on\shi pi neMbdel s directory and
creates packages for the domain, application, and integration
models there.

1-200

Tutorials

6.

OptimalJd 3.1

Mount the directories to contain the generated EJB and Web code
(\Opti mal J\i msl nt egr ati on\ shi pi nsEj bCode and
\ Opti mal J\'i msl nt egrati on\shi pi ns\WebCode).

Choose File>Mount Filesystem. In the wizard, select Local
Directory, and select the directory to mount. Click Finish.

Step 4 ? Install the resource adaptor

You need to install the IMS Connector for Java resource adapter in the
OptimalJ environment.

To set up your environment:

1.
2.

Choose Deploy>Install JCA Resource Adapter.

In the Resource Adapter Filename field, enter or browse to the
RAR file containing the resource adapter. The IMS resource
adapter is located in the i nmsi co. rar file in your IBM IMS
Connector for Java installation.

Click Finish to install the resource adapter. This copies the

i msi co. rar filetother esour ce directory inyour user directory.
It also unpacks the RAR file and mounts any JAR files within as
file systems.

Figure 1-109 Code model after installing resource adaptor

Step 5 ? Define an IMS Connector for Java connection factory

The JCA component model element that you will create later references
a connection factory definition. This allows the definition to be used in
the generated code and in configuring the EJB server.

1.

2.

Choose Tools>Options to display the Options window. Browse to
OptimalJ>Configuration>Code Generation>JCA Settings.
Right-click Connection Factories and choose Add IMS
Connector for Java.

Using OptimalJ: Tutorials

1-201

OptimalJd 3.1

3. Enteri nms7 as the name for the connection factory. This is the
name of the definition and does not have to match the ID of the
IMS system. Click OK.

4. Select the connection factory you just created. If not open already,
display the properties. The default properties are automatically
supplied.

5. Fill in the relevant properties for your IMS Connect, as follows:

Table 1-12 Connection factory properties
Property Description

HostName Address of host where IMS Connect runs, for example,
myconpany. com

PortNumber Port used by IMS Connect

DataStoreName The name of the target IMS datastore. This must
match the ID parameter of the Datastore statement
that is specified in the IMS Connect configuration
member when IMS Connect is installed. This field is
case-sensitive.

Figure 1-110 IMS connection factory properties

1-202 Tutorials

OptimalJd 3.1

For more information on these settings, see Define a connection
factory.

Step 6 ? Create the JCA client module and JCA component

1.

2.

In Explorer [Application Model], expand the nodes

shi pi ms.integration.jca.

Right-click the jca package and choose New
Child>JCACIlientModule. Click Finish to accept the default
name.

Right-click the jca package again and select New
Child>JCAComponent.

Select the JCAClientModule and click Next.

Enter Shi pdatj as the name of the JCAComponent. Select the
connection factory you defined earlier and click Next.

The name of the JCAInteraction defaults to shi pdat j . This name
(after conversion to upper case) must match the name of the
transaction as defined to IMS.

Click Add twice to add one in parameter and one return
parameter. You can ignore the parameter types for now.

Click Finish.

Step 7 ? Import the COBOL message structures

1.

w

Choose Model>Import Model>Import COBOL from File to
start the COBOL import wizard.

Selecti nt egrati on. j ca and click Next.

Select Import a Copybook and click Next.

Use the browse button to select shi pi n. cpy copybook. This file is
located in UserDi r

\ sanpl eproj ects\integration\jca\ins\shipdate\.Click
Next.

Select thei n parameter under the shi pdat j interaction and click
Finish.

Perform the same steps to import the shi pout . cpy copybook,
this time selecting the r et parameter.

Your tree looks like this:

Using OptimalJ: Tutorials

1-203

OptimalJd 3.1

Figure 1-111 Integration model after importing COBOL copybooks

Step 8 ? Generate domain and application models from
integration model

By generating an application model based on the integration model, you
can generate a session bean (and related code) to serve as a wrapper for
the JCA component client code. By first generating a domain model based
on the integration model, you can also generate a Web front end to invoke
the session bean.

To generate the domain model and application models from the
integration model:

1. Choose Model>Generate Model>Generate Domain
Models>Generate Domain from JCA to start the wizard.

2. Inthe wizard, select shi pi ns. i nt egrati on. j ca as the source
and shi pi ms. domai n as the target domain model. In the last
pane, accept the defaults and click Finish.

3. Choose Model>Update All Models to generate the EJB and Web
models from the domain model.

4. Inthe wizard, select shi pi ns as the top model package and click
Finish.

Your tree now looks like this:

1-204 Tutorials

OptimalJd 3.1

Figure 1-112 Application and integration models

Step 9 ? Generate and compile the code

1. Right-click the shi pi ns package and choose ModelGenerate
Code.

2. When prompted for the location of generated code modules, choose
\ Opti mal J\'i nmsl nt egrati on\shi pi nsEj bCode for the EJB
module code and
\ Opti mal J\'i msl nt egration\shi pi ns\WebCode for the Web
module code.

3. Choose Project>Compile Project to compile all the code.

Using OptimalJ: Tutorials 1-205

OptimalJd 3.1

Figure 1-113 Code model after compiling code

The jca package now contains a Shi pdat j JCAConponent . j ava source
file and package directories for copybookshi pi n and

copybookshi pout . The package directories contain classes that extend
the Record framework. The ShipdatjJCAComponent class represents the
JCA component and can be used as a normal class to invoke the
SHIPDATJ IMS COBOL program.

In the ejb package, you have a Shi pdat j Bean. j ava and other files
defining a session bean. The session bean uses the JCA component class
in the jca package to invoke the SHIPDATJ IMS COBOL program.

In the web package, you have forms, actions and other files, defining a
Web front-end. The Web front-end uses the session bean in the ejb
package to invoke the SHIPDATJ IMS COBOL program.

1-206 Tutorials

OptimalJd 3.1

Step 10 ? Create the JCA component test program

The JCA component test program uses the generated JCA component
class in the jca package to invoke the SHIPDATJ COBOL program. Steps
11 and 12 are optional, but provide an easy environment in which to
debug the generated component. This can be helpful in diagnosing
problems when the IMS transaction is not being executed.

1.
2.

Mount the directory User Di r ect or y\ sanpl epr oj ect s\ .

In the Explorer [Code Model], copy

i ntegration\jca\ins\shipdate\ Shi pdat eNonManagedJCA
Test . j ava from this directory to the shi pi ns package in
directory \ Opti mal J\i msl nt egr at i on\ shi pi nsMbdel s.

If your IMS system uses a code page other than the default
Cp1140 (compatible with EBCDIC 037), open the file and change
the encoding defined by the variable char act er Encodi ng. (See
the character encoding sample available in the directory

char act er encodi ng for additional information.)

Save your changes and compile the
ShipdatjNonManagedJCATest source.

Step 11 ? Test the JCA component

1.

2.

3.

In the Explorer [Code Model], navigate to the folder

\ Opti mal J\'i nsl ntegration\shi pi nsVbdel s.

Right-click the file Shi pdat eNonManagedJCATest . j ava and
choose Execute.

The output window displays:

V¢l cone to the (ptinal Delivery Shipping Systen
Your order date is Gt 5 2001

M ease wait while we cal cul ate your shipping date. ..
Your order w il ship on Gt 12, 2001

Step 12 ? Test the session bean

You can use the generated Web application to invoke the JCA component
via the session bean generated from the EJB model.

1.

Choose Test>Start Application Server. Ensure that
..\application\ejb\ejb.jar isselected in the Archive File
Selector window and click OK. Wait for the server to start. This
starts the Web server and browser, displaying the Main Menu.
Click Maintenance Shipdat;j.

Click shipdatj.

Using OptimalJ: Tutorials

1-207

OptimalJd 3.1

4. Enter the day, month, and year of the order date and click OK.
The page redisplays with a ship date that is 7 days after the
entered order date.

Instead of using the Web application, you can use the supplied RMI test
program. This program uses the session bean, generated from the
EJBSessionComponent, to invoke the generated JCA component, which
in turn invokes the SHIPDATJ COBOL program.

1. Create the test program:

= Copy the file Shi pdat j BeanTest . j ava to your shipims package
directory. This file is located in the directory
User Di r\ sanpl eproj ects\integration\jca\ins\shipdat
e

= Right-click Shi pdat j BeanTest . j ava and choose Compile.

2. In Explorer [Code Model], select the shi pi ms. application.ejb
package.

3. From the menu bar, choose Test>Start Application Server.
Ensure that . .\ applicati on\ejb\ejb.jar isselected in the
Archive File Selector window and press OK. Wait for the server to
start.

4. Right-click ShipdatjBeanTest and choose Execute.
5. The output window should display
Wl cone to the (ptinal Delivery Shipping Systent
Your order date is Ot 5, 2001
P ease wait while we cal cul ate your shipping date. ..
Your order w il ship on Gt 12, 2001
Common errors are:
1] java.io. |l (xception: Shipstat JCAGonponent . shi pstat :
2 | Exception executing interaction:
3| javax.resource. spi . Cormiexcept i on: | C3DO03E
4 | comibmconnector?2.ins.ico. | MsMnagedGnnect i on@5c3ac.
| connect(Sring,
5| Integer) error. Failed to connect to host [ibni. nyhost.
| conmy, port [1234].
6 | [java net.Qnnect Exception: Gonnection refused: connect]

The resource adapter was unable to connect to IMS Connect on the
specified port (1234). Make sure IMS Connect is available and that
the HostName and PortNumber specified in the Options panel are
correct.

1-208 Tutorials

OptimalJd 3.1

1] java.io.|CBxception: ShipstatJCAGNponent. shipstat :

2 | Exception executing interaction:

3| javax.resource. spi . Cormiexcept i on: | C3DO03E

4 | comibm connector?2.ins.ico. | MsManagedGnnect i on@5c3ac.
| connect(Sring,

5| Integer) error. Failed to connect to host [ibni. nyconpany.
| con}, port [43,215].

6 | [java. net.UhknownHbst Exception: i bni. nyconpany. conj

The resource adapter was unable to connect to the specified host
(ibm1.mycompany.com). Check the HostName setting in the Options
panel.

1] java.io.|CBxception: ShipstatJCACNponent. shipstat :
2 | Exception executing interaction:
3| javax.resource. spi . H SSyst enixcepti on: | GDO01E
4 | comibmconnector?2.ins.ico. | MVanagedGonnect i on@5c3ac.
| cal | (Gonnection, | nteracti onSoec,
5| Record, Record) error. |Ms Qonnect returned error: RETCDEA 4],
| REASONOCDES] NANDCCST | .
6 | [comibmins.ico. | MAdapt er @cf Oce. recei ve(l nt eract i onSpec) :
7] com
| i bmi ns. i co. | MBnnResour ceExcept i on]

The specified data store name was not defined to IMS Connect. Check
the DataStoreName setting in the Options panel.

Messages beginning with I1CO originate with the IMS Connector for
Java resource adapter. RETCODE and REASONCODE codes
originate from IMS Connect. See the corresponding IMS
documentation for further information.
java.io. | (Bxception: Shipdatj JCAConponent . shi pdatk :
Exception executing interaction: comibmconnector?2.ins.
i co. | MBDFSvessageExcept i on:
| GDO75E comi bmi ns. i co. | MeAdapt er @ee361. r ecei ve(| nt er act i onSpec)
error.
I MB returned DFS nessage: DFS064 07: 46: 24 DESTI NATI ON CAN
NOT BE FOUND (R CREATED
The specified transaction code is not defined. Verify that the

transaction is defined to IMS and that the name of the
JCAInteraction in the model matches the transaction code. Note that

Using OptimalJ: Tutorials

1-209

OptimalJd 3.1

if the JCAlInteraction name is changed, the JCAComponent must be
regenerated and all code recompiled.

In this tutorial, you have integrated a sample IMS COBOL program with
an OptimalJ application.

A second sample, SHIPSTAT, is available in the directory

User Di r\ sanpl eproj ects\integration\jca\ins\shipstat. The
steps for this example are available from the OptimalJ scenarios. Choose
Scenarioslntegrating with IMS.

Further reading

For more information on integrating with IMS, see the documentation
under Integrating with JCA and IMS Connect documentation.

1.20 Handling the COBOL REDEFINES clause

This tutorial shows different ways to handle cases where REDEFINES is
used in a record imported into OptimalJ.

A simple COBOL program called REDEF is provided for this tutorial.
This program takes a function code as input and can return two types of
records. The function code can be A or B, and the corresponding record
data is returned along with the current date.

Prerequisites
Before starting this tutorial, you need to:

< Have an installed CICS region of a version supported by your CICS
Transaction Gateway installation

= Ensure that the IBM CICS Transaction Gateway Version 4 or above
is installed. It is required for connection to CICS.

= You also need the file ci cseci . rar, which is not available in the
OptimalJ installation kit. The file can be found in the depl oyabl e
directory of the CICS Transaction Gateway installation.

Duration
This tutorial takes approximately one hour to complete.

1-210

Tutorials

OptimalJd 3.1

Objectives

In this tutorial, you import a CICS COBOL program into OptimalJ,
generate a JCA component class, session bean and web interface for it,
and use the generated JCA component to invoke the CICS program.

In this tutorial, you learn how to:

= Install a JCA resource adapter in OptimalJ

= Define a connection factory for the resource adapter

< Import a CICS COBOL program

= Update the JCA model to select the definitions of fields desired in the
user interface

= Generate code to invoke the CICS program

« Update the generated JSP to display the desired output record

Step 1 ? Prepare the mainframe COBOL program

If the REDEF program is already available in your CICS system you can
skip this step. See your CICS systems programmer for assistance with
these tasks.

1. Upload the r edef . cbl program to a source data set on the
mainframe.

2. Compile the program and place the resulting load module in a
data set referenced by the DFHRPL DD statement of the CICS
region.

3. Use CEDA to define the REDEF program and install the
definition.

Step 2 ? Prepare the file system

During the course of this tutorial, you define models and generate EJB
and Web code. This information should be stored in separate directories
and mounted for your project.

1. Create a new directory, for example:
\ Opt i mal J\ cobol Redef i nes.
2. In this directory, create three subdirectories:

e \Optimal J\ cobol Redef i nes\redefi neshbdel s

e \Optimal J\ cobol Redef i nes\redefi neskj bCode
e \Optimal J\ cobol Redef i nes\redefi nesWwebCode

Using OptimalJ: Tutorials 1-211

OptimalJd 3.1

Step 3 ? Create new OptimalJ project

Create a new OptimalJ project called r edef i nes.

1.

2.

Choose Project>New OptimalJ Project. Set the project name
toredef i nes and click Next

Select New Model as the project type and specify the directory
\ Opt i mal J\ cobol Redefi nes\ redefi neshMbdel s in the
Model dir field.

Enter r edef i nes as the Fully-qualified package name and
choose Three Tier Application Structure with

I nt egrati on as the Initial Structure. Click Next.

Choose Mount each filesystem yourself and click Next.

Click Finish. This mounts the

\ Opt i mal J\ cobol Redef i nes\r edefi neshMbdel s directory
and creates packages for the domain, application, and integration
models there.

Mount the directories to contain the generated EJB and Web code
(\ Opt i mal J\ cobol Redef i nes\redefi neskj bCode and

\ Opt i mal J\ cobol Redef i nes\r edefi nesWwebCode).

Choose File>Mount Filesystem. In the wizard, select Local
Directory, and select the directory to mount. Click Finish.

Step 4 ? Install the resource adaptor

For this tutorial, you need to install the CICS ECI resource adapter in
the OptimalJ environment.

1.
2.

Choose Deploy> Install JCA Resource Adapter

In the Resource Adapter Filename field, enter the name of the
RAR file containing the resource adapter (or use the browse
button to locate the RAR file). The ECI resource adapter is located
inthefileci cseci . rar inthedepl oyabl e directory of your IBM
CICS Transaction Gateway installation.

Click Finish to install the resource adapter. This copies the RAR
file to the r esour ce directory in your user directory. It also
unpacks the RAR file and mounts any jar files within as file
systems.

1-212

Tutorials

OptimalJd 3.1

Figure 1-114 Mounted directories and jar files

Step 5 ? Define a CICS ECI connection factory

The JCA component model element created by importing a COBOL
program references a connection factory definition. This allows the
definition to be used in the generated code and in configuring the EJB

server.
1.

Choose Tools>Options to display the Options panel. Expand the
nodes OptimalJ Configuration>Code Generation>JCA
Settings.

Right-click the Connection Factories node and choose Add
ECIResourceAdapter Factory from the pop-up menu.

Enter a name for the Connection Factory, for example

ci cseci rar . This is the name of the definition and does not have
to match the APPLID of the CICS region. Click OK.

Select the connection factory you just created. If not open already,
display the properties. The default properties are automatically
supplied.

Fill in the relevant properties as follows, and close the Options
panel:

Using OptimalJ: Tutorials

1-213

OptimalJd 3.1

Table 1-13 Connection factory properties

Property Description

ConnectionURL Address of the CICS Transaction Gateway, for
example, t cp: / / myconpany. com
PortNumber Port used by the Gateway (IBM default is 2006)

ServerName Server name for the CICS region (APPLID). This field
is case-sensitive.

Figure 1-115 Connection factory properties for CICS ECI resource adaptor

For more information on these settings, see Define a connection
factory.

1-214 Tutorials

OptimalJd 3.1

Step 6 ? Import the COBOL program

1.

w

5.

Choose Model>Import Model>Import COBOL from File to
start the COBOL import wizard.

Selecti nt egrati on. j ca and click Next.

Select Import a CICS Program and click Next.

Select the r edef . cbl program. This file is located in a
subdirectory of your user directory:

User Di rect ory\ sanpl eproj ect s\i ntegrati on\jca\cics\
r edef i nes\ . The default location of the user directory on
Windows is C: \ Docunment s and Settings\User\. Opti mal J-
Edi tion\ 3. 1; on UNIX, it is $HOVE

In the JCA Connection Factory field, select the ECI resource
adaptor factory you defined earlier.

Click Finish. Your tree looks like this:

Figure 1-116 Integration model for JCA

Using OptimalJ: Tutorials

1-215

OptimalJd 3.1

For a description of the integration model elements and how they are
mapped from CICS COBOL, see Structure of JCA integration model
(COBOL).

Step 7 ? Select the fields of interest for the bean and user interface

In the step 8, you will generate domain and application models from the
JCA model. All fields copied to the domain model are copied to the EJB
and WEB models, and are ultimately made available in the EJBStructs
and JSPs generated from those models. In this step you identify those
fields that should not be present in the bean and user interface by setting
their isFiller property to Tr ue.

To identify those fields not of interest in the EJB and WEB models:

1. Select the COBOLField FORMATTED- DATE in the JCA model
package r edefi nes. i ntegration.j ca.

2. Locate the isFiller property in the Properties pane and set its
value to t r ue.

3. Repeat this procedure for the COBOLFields MONTH- CHARS and
RECORD- DATA.

In the COBOL program file, the REDEFINES clause is used several
times:

1| 05 DATE QGONTENTS RECEA NES FCRVATTED: DATE

2] ...

3| 05 MNTH CHARS RECEA NES MONTH NAME

a4 ...

5| 05 REQORD A REDEFI NES REQCRD DATA

6] ...

7| 05 REQORD B REDEFI NES REQCRD DATA

8 ...

By setting the isFiller property, you determine which field should be used
in the bean implementation.

Step 8 ? Generate domain and application models

By generating an application models based on the integration model, you
can generate a session bean (and related code) to serve as a wrapper for
the JCA component client code and a WEB front end to invoke the session
bean.

To generate the domain model and application models from the
integration model:

1-216

Tutorials

OptimalJd 3.1

Choose Model>Generate Model>Generate Domain
Models>Generate Domain from JCA to start the wizard.

In the wizard, select r edefi nes. i ntegrati on.jca as the
source and r edef i nes. domai n as the target domain model.
Accept the default values on the last pane and click Finish.
Choose Model>Update All Models to generate the EJB and Web
models from the domain model.

Inthe wizard selectr edef i nes. appl i cati on as the destination
and click Finish.

Your tree now looks like this:

Figure 1-117 Application models

Step 9 ? Generate and compile code

1.
2.

Right-click the r edef i nes package and choose Generate Code.
When prompted for the EJB module code location, choose

\ Opt i mal J\ cobol Redef i nes\r edefi neskj bCode. When
prompted for the Web module code location, choose

\ Opt i mal J\ cobol Redef i nes\ r edef i nesWebCode.

Choose Project>Compile Projectto compile the code.

Using OptimalJ: Tutorials

1-217

OptimalJd 3.1

Figure 1-118 Code model

The jca package now contains a Redef JCAConponent . j ava source file
and arecor dr edef package directory. The recordredef package
contains a Df hcommar ea. j ava class. The RedefJCAComponent class
contains code to invoke the JCA interactions defined in the model. The
JCA component class can be used as a normal class to invoke the REDEF
CICS COBOL program.

In the ejb package, you have a Redef Bean. j ava and other files, defining
a session bean. The session bean uses the JCA component class in the jca
package to invoke the redef CICS COBOL program.

In the web package, you have forms, actions and other files, defining a
web front end. The web front end uses the session bean in the ejb package
to invoke the REDEF CICS COBOL program.

The EJBStructs and JSPs do not contain references to the fields whose
isFiller property was set to true.

1-218

Tutorials

OptimalJd 3.1

Step 10 ? Edit the generated output JSP

The generated code now contains only a single field for each redefined
COBOLField, except for RECORD-A and RECORD-B. The generated
JSP must be changed to display the correct record based on the returned
value in RECORD-TYPE.

1. In Explorer [Code Model], expand the Web code directory
\ Opt i mal J\ cobol Redefi nes\ r edef i nesWebCode.

2. Double-click the file Redef Redef | nvoker CQut put . j sp toopen it
in the editor.

3. Locate the section that displays the output of RECORD- A. This
begins as follows:

<tr>
<th cl ass="nai nt -1 abel ">
<bean: nessage key="| abel . Redef Recor dARecor dASt ri nghaneA'/ >
4. Before this code insert the following:
<l ogi c: equal val ue="A" nane="r edef Redef For mi
pr oper t y="df hcormar eaRet ur nRecor dType" >

5. Locate the section that displays the output of RECORD- B. This
begins like the following:

<tr>

<th cl ass="nai nt - | abel ">

<bean: nessage key="l abel . Redef Recor dBRecor dBS ri ngtbnePhoneB'/ >

6. Before this code insert the following:

</l ogi c: equal >

<l ogi c: equal val ue="B' nane="r edef Redef For mi

pr oper t y="df hcormar eaRet ur nRecor dType" >

7. Locate the end of the output display with the </ t abl e> tag.

8. Before this code insert the following:

</l ogi c: equal >

9. Press Cont r ol - S to save your changes.
After excluding the RECORD-TYPE field using the isFiller property of
the COBOLField and generating the application models and code, there
are still two field definitions available?RECORD-A and RECORD-B. By
adding logic to the generated JSP, you add the programming required to

display the correct record based on the returned value in RECORD-
TYPE.

Using OptimalJ: Tutorials

1-219

OptimalJd 3.1

1.21 Integrating

Step 11 ? Test the session bean

You can use the generated Web application to invoke the JCA component
via the session bean generated from the EJB model.

1. Choose Test>Start Application Server. Ensure that
..\application\ejb\ejb.jar isselected in the Archive File
Selector window and press OK. Wait for the server to start. This
starts the Web server and browser, displaying the Main Menu.
Wait for the server to start. This starts the Web server and
browser, displaying the Main menu.

2. Click Maintenance Redef.

Click redef.

Enter Ain the functionCode field and click OK.

The page redisplays with the current date and RECORD- A fields.

Click Home.

Click Maintenance Redef.

Click redef.

Enter B in the functionCode field and click OK.

The page redisplays with the current date and RECORD- B fields.

In this tutorial, you have integrated a sample CICS COBOL program
containing REDEFINES clauses with an OptimalJ application. It is
important to remember that the record framework handles REDEFINES
clauses in the same way as COBOL. Each time a redefined field is set, the
new values replace the corresponding values in other definitions.
Likewise, getting the data of a redefined field uses the same source as
other definitions of the field. When a field is defined with both numeric
and non-numeric types, care must be used to avoid attempting to get data
with a numeric getter when the data in the record may be non-numeric.

o

© No O

Further reading

For more information, see COBOL REDEFINES clause and the other
documentation on Integrating with JCA, as well as the CICS Transaction
Gateway documentation.

a Web service

This tutorial shows you how to call an external Web service from your
OptimalJ application.

1-220

Tutorials

OptimalJd 3.1

The Web service is based on the CRM example. It returns an object that
contains the number of calls grouped by their level (normal, critical and
enhancement). It requires the customer identifier (custid) as input
parameter. The Web service you call in this tutorial is deployed on a
Compuware server. The WSDL that is imported into OptimalJ is
generated dynamically.

Prerequisites

= You must be familiar with the basic development features of
Optimald.

= This tutorial assumes you are familiar with the concept of Web
services and its related technologies (SOAP, WSDL, XMLSchema).

= The tutorial demonstrates how to call a Web services that is hosted by
Compuware. You need to know the values for your proxy host and
port, if network communication is routed via a proxy server. The
proxy host and port number are required to test the Web service. Ask
your system administrator or MIS department for this information.

Note: For this tutorial a database is not required.

Duration
This tutorial takes approximately one hour to complete.

Objectives

In this tutorial you learn how to call a Web service within your
application.

Step 1 - Prepare the filesystem

1. Create a new directory \ wsconsuner ?this directory will hold your
model definitions and EJB and Web code in separate subdirectories.

2. Create subdirectories \ wsconsumer \ wsMbodel ,
\wsconsuner\ wsEj bCode and \ wsconsurmer \ ws\\bCode.

Step 2 - Create a new project

1. From the menu, select Project>New OptimalJ Project. Set the
project name to WsConsuner and click Next.

Using OptimalJ: Tutorials

1-221

OptimalJd 3.1

2. Select the type of project. Set the radio group to new Model , set
the Model dir to \ wsconsuner \ wsMbdel and click Next.

3. Set the Fully-qualified Package Name to wsconsumer . The
Initial Structure issetto Three Tier Application
Structure with Integration (default). Click Next.

4. Accept the default Mount each file system yoursel f and
click Finish.

Step 3 - Define a Web service client module

1. In the Explorer [Application Model], right-click
i ntegration. webservi ces.
2. Choose New Child>WSClientModule.
3. Accept the default name WSCl i ent Modul e and click Finish.

Step 4 - Import WSDL file

In this step, you import the Web service description in the OptimalJ
integration model. You can import the WSDL file (and related XML
Schema files) if you know the URI for it. The WSDL can also be generated
dynamically using the Web service classes as source information. In this
tutorial you apply the last method.

1. If you are working behind a firewall, first check that the proxy
host and port are specified. Enter these settings as follows:

e On the menu, choose

Tools>Setup Wizard. Select Use Proxy Server and fill in the
Server name (IP address) and Port.

= Alternatively, on the menu choose Tools>Options>IDE
Configuration>System>System Settings and assign the
proper values to the Proxy Host, Proxy Port, and Use Proxy
properties.

2. On the menu. choose Model>Import Model>Import Web
Service WSDL/XMLSchema from File.

3. In the WS Absolute URI field, fill in the following URI htt p: //
j avacentral . conpuwar e. conif Webser vi ceTut ori al 31/
servi ces/ Cust oner Cal | Over vi ew?wsdl and click Next.

4. The Web service is protected and requires authentication. You
need to provide a username and password. Enter wst ut ori al for
the User Name and publ i ¢ for the password. The WSDL is now
dynamically generated and imported in OptimalJ's Web service
integration model.

1-222

Tutorials

OptimalJd 3.1

5. Select the integration package
wsconsurmer . i nt egrati on. webser vi ces toimport toand click
Next.

6. Select the target module WSCl i ent Modul e and click Finish.

Using OptimalJ: Tutorials 1-223

OptimalJd 3.1

Figure 1-119 Web service integration model after importing a WSDL file

1-224 Tutorials

OptimalJd 3.1

The import process automatically creates a WSDL Repository called
wsdl reposi t ory and a WSClientComponent called

Cust onrer Cal | Over vi ew, and a XSDSchema element called schena
(this is a child element of Types). The schema contains a complex type
Cal | sOver vi ew. The WSClientModule is a placeholder for the
WSClientComponents; its part property refers to a collection of
WSClientComponents. The WSClientComponent

(Cust omrer Cal | Over vi ew) is a placeholder for the Web service
operations (see the W5Cl i ent Conrponent . WsConnect or Oper ati on
element).

In this example, the WSClientComponent Cust oner Cal | Over vi ewhas
one operation get Cal | sOver vi ew. The WSConnectorOperation has a
property wsoperation. The value of this property links to the WSPortType
element in the WSDLRepository.

To see the SOAP Address, expand the nodes

wsdl reposi tory. Cust orrer Cal | Over vi ewSer vi ce. Cust oner Cal |
Over vi ew. The property location of the SOAPAddress element contains
the URIL.

Step 5 - Set username and password

The Web service host requires a username and password for calling
operations on this Web service. You can specify the username and
password as properties of the WSClientComponent. The username and
password are saved in the deployment information for the session bean
that acts as a wrapper for the Web service component.

1. Select the WSClientComponent Cust orer Cal | Over vi ew.
2. In the Properties window, enter wst ut ori al for the userName
and publ i ¢ for the userPassword.

Step 6 - Define Web service security properties

The SOAP request message that is sent to the provider of the Web service
needs to be secured. The algorithms used for generating a message digest
and a digital signature, are determined by the properties of the

WSS gni ngPr operti es model element and are agreed on with the
receiver of the message, who validates the message.

1. Right-click the webser vi ces package and choose New
Child>WsSSigningProperties.

2. Enter si gner in the Name field.

3. Enter the following property values for the signer element (some
of them are default):

Using OptimalJ: Tutorials

1-225

OptimalJd 3.1

Table 1-14 signing properties

Property

Value

canonicalizationMethod
keyInfoMethod
mustUnderstand
signatureMethod

Cl14N Exclusive QOrit Coments
X509Certificate in X509Dat a
True

DSA- SHAL

transformMethod Cl14N Excl usive Orit Comments
For a detailed explanation of these properties, see Defining
signing properties.
Note: the message receiver rejects the message if you select different
values!)

4. Select the WSClientComponent Cust oner Cal | Over vi ewto
assign the security properties to the Web service component.

5. Click the property securityProperties. Click the Browse button and
add the si gner object to the property.

Step 7 - Generate domain and application models

By generating an EJB model based on the integration model, you
generate a session bean (and related code) to serve as a wrapper for the
Web service client code. Although you can generate the EJB model
directly from the integration model, it is better to first generate the
domain model. This enables you to generate a Web model that you can
use to create a user interface for your Web service operation.

1. On the menu choose Model>Generate Model>Generate
Domain Models>Generate Domain from Web Service to
start the wizard.

2. In the wizard:

= Select Cal | Qut and click Next.

1-226 Tutorials

OptimalJd 3.1

= Select the webser vi ces package in the integration model and
click Next.

« Select wsconsuner . domai n as the target model and click
Finish.

Note: the domain class model contains a package schema with a
DomainStructType Cal | sOver vi ew. . The domain service model
contains a domain service Cust oner Cal | Over vi ewwith an operation
get Cal | sQvervi ew.

3. On the menu choose Model>Generate Model>Generate
Application Models>Generate EJB from Domain. In the
wizard:

e Select wsconsuner. donai n as the source

e Selectwsconsuner. application. ej b as the target and click
Next.

= Accept the default generation options and click Finish.

4. On the menu choose Model>Generate Model>Generate
Application Models>Generate WEB (EJB based) from
Domain. In the wizard:

= Select wsconsuner . domai n as the source

e Selectwsconsuner. appl i cati on. web as the target and click
Finish.

= Accept the default generation options and click Finish.

Using OptimalJ: Tutorials

1-227

OptimalJd 3.1

Figure 1-120 Application model after generating models

The domain class model now contains a domain struct type
(CallsOverview) with three fields: normal, critical, and enhancement.
This struct is the type of the return parameter of the getCallsOverview
operation. The domain service model contains a domain service
CustomerCallOverview with one operation (getCallsOverview).

The EJB Model contains a EJB session component
(CustomerCallOverview).

1-228

Tutorials

OptimalJd 3.1

The Web model has a Web component (again called
CustomerCallOverview). The Web action getCallsOverview invokes the
business method with the same name on the EJB session component.

Note: Instead of generating the EJB and Web models individually, you
can choose Model>Update All Models. This option additionally
generates the DBMS model, which is not used in this tutorial.

Step 8 - Generate code

After generating the EJB and Web models, you can generate the
application code. The code generated for the Web services integration
model includes client stub code and helper classes used to call out to the
Web service.

1. On the menu choose Model>Generate All Code.

2. You are prompted to select a filesystem for the code of the ejb
module. Click Mount New Filesystem and select the folder
\wsconsuner\ wsEj bCode. Click Ok.

3. Select a filesystem for the code of the Web module. Click Mount
New Filesystem and select the folder
\wsconsuner\ ws\WebCode. Click Ok.

Step 9 - Modify the client-config.wsdd file

When generating the code for the EJB module a configuration file is
created called cl i ent - confi g. wsdd. This file is used by the Axis
toolkit and includes information about the keystore used. This
information needs to be provided by you.

1. Inthe Explorer[Application Model] select the appl i cation.ejb
package.

2. Right-click the EJB module ej b and choose Edit Generated
Files>client-config.wsdd.

3. Enter the following values for the attributes as available in the
free block:

1| <paraneter nane="keystoreH |e"
val ue="(ptinal Jinstal I Dir\docs\tutorial \ nykeystore"/ >

2| <par anet er nane="keyst or ePass" val ue="changei t"/>

3 <par anet er nane="pri vat ekeyA i as" val ue="exanpl e"/>
4| <par anet er nane="pri vat ekeyPass" val ue="changei t"/>
5] <paraneter nane="certificateAias" val ue="exanpl e"/>

Using OptimalJ: Tutorials

1-229

OptimalJd 3.1

6 | <par anet er nane="keyst or eType" val ue="j ks"/ >

The keystore file nykeyst or e is located in the OptimalJ installation
directory (subdirectory docs\ t ut ori al). This file is generated with the
keytool utility, available in your JDK. The file has been created with the
following command:

keyt ool

- genkey

-dnane "cn=(pti nal J, ou=Tutorial, o=Gonpuware, c=S'

-alias exanpl e

- keypass changei t

-keystore C\Qptinal Jinstal | Dir\docs\t utori al \ nykeyst ore

- storepass changei t

-validity 400

This command creates a keystore named nykeyst or e in the directory
c:\optimalj, and assigns it the password changei t . It generates a
public/private key pair for the entity whose "distinguished name" has a
common name of Opt i mal J, organizational unit of Tut ori al ,
organization of Corpuwar e and a two-letter country code US. The default

keystore type is j ks. It uses the default DSA key algorithm to create the
keys.

For more information on the keytool program, see http://java.sun.com/
j2se/1.4.2/docs/tooldocs/windows/keytool.html

Step 10 - Specify EJB execution settings

The CustomerCallOverview Web service is hosted by Compuware.
Because this Web service is outside your company's environment, you
need to specify some additional settings if communication is channeled
via a proxy.

1. To specify the proxy settings, on the menu choose
Tools>Options>Debugging and Executing>Execution
Types>EJB Execution.

2. Use the property Java properties, to specify your proxy host name
and port number. Type: -

Dhtt p. pr oxyHost =Pr oxyHost NameOr | PAddr ess and -
Dhtt p. proxyPort =Pr oxyPor t Nunber . (Separate the two
settings with a space.)

1-230

Tutorials

OptimalJd 3.1

These setting are needed by the application server at run time to
call the Web service and obtain a reference to the Web service
endpoint.

Note: If you want to start the application server in debugger mode, you
also need to add these settings under EJB Execution Debugger. If the
Web service needs to be accessed via the HTTPS protocol, the EJB
Execution properties need to change accordingly: - Dht t ps. pr oxyHost =
Pr oxyHost NameOr | PAddr ess and -

Dht t ps. pr oxyPor t =Pr oxyPor t Nunmber . If you change the Java
properties, the application server must be restarted.

Step 11 - Call the Web service

You are now ready to call the Web service. In this tutorial, a Web
interface is used to call the Web service operation. This Web interface is
generated from the Web model.

1. On the menu, choose Project>Compile Project to compile all
code.

2. On the menu choose Test>Start Application Server. Wait for
the server to start.

3. Start the logging server by choosing Test>Start Logging
Server. Its output window contains information concerning the
SOAP message processing which is interesting to read.

Note: This step is not mandatory.

4. Click Maintenance CustomerCallOverview, and then on the
toolbar getCallsOverview.

5. Call the Web service, by filling in a value for the input parameter.
Existing values are: 0001, 0002, 0003 and 0004. Click OK to see
the return values.

6. In the output window of the logging server, search for the SOAP
message that has been sent to the Web service host.

The field label for the input parameter might be something like in0. This
is because when importing the Web service, the WSDL is generated
dynamically. If, in this process, a part name in the WSDL can not be
determined, a default name is used for it.

Using OptimalJ: Tutorials

1-231

OptimalJd 3.1

If the returned values are all -1, the submitted customer id does not exist.
If there is a connection failure, check your proxy settings (as specified in
Java properties under Tools>Options>Debugging and
Executing>Execution Types>EJB Execution). If you receive a
security related error, check the correctness of the values of the signer
element and the settings inthe cl i ent - confi g. wsdd file. Although far
less likely, it can also indicate that the Web service itself is not running.

In this tutorial you learned how to integrate an external Web service into
your OptimalJ application. The process starts with importing a Web
service. The Web service interface description is generated dynamically
(derived from the Web service classes, as demonstrated in this tutorial),
or is imported from a existing WSDL file. The next steps concern the
generation of domain and application models. The generated session
component in the EJB model acts as a wrapper for the Web service client
component in the integration model. The generated Web component can
be used as a simple user interface to test the Web service call-out. In most
cases, proxy settings need to be set to establish a connection between the
Web service client component and the Web service on the provider's host
machine.

Further reading
For more information, see Consuming a Web service.

1.22 Developing and deploying a Web service

This tutorial shows you how to create a Web service as part of the default
CRM application. This Web service can subsequently be called by other
applications to retrieve information about a customer's service level. The
Web service contains one operation, getServiceLevel. The input
parameter is the customer ID; the return value is its service level
(BRONZE, SILVER, or GOLD).

1-232

Tutorials

OptimalJd 3.1

Prerequisites

= You must be familiar with the basic development features of
OptimalJ.
This tutorial also assumes that you followed the tutorial Your first
OptimalJ application.

= This tutorial assumes you are familiar with the concept of Web
services and its related technologies (SOAP, WSDL, XMLSchema).

Duration
This tutorial takes approximately 45 minutes to complete.

Objectives

In this tutorial you will learn to develop a Web service that exposes
functionality of the CRM application over the Internet.

Step 1 - Prepare the filesystem

If you previously created OptimalJ projects using the default CRM
example, you have to create a new directory for the example application.

= Create a new directory \ wspr ovi der ?this directory holds your
model definitions as well as the generated code for the Web, EJB and
Web service integration models. You can decide where to create this
directory, although it is recommended not to do this in your
Opti mal JUserdi rectory.

Step 2 - Create a new project containing the CRM example

The CRM example is a sample application delivered with OptimalJ that
demonstrates features and functionality available in OptimalJ. You can
enable the CRM application when creating a new OptimalJ project.

To create a new project based on CRM:

1. From the menu, select Project>New OptimalJ Project. Set the
project name to WSPr ovi der and click Next.

2. Select the type of project. Set the radio group to Experi nent

wi th one or nore exanpl e Model s and set the Unpack dir

to \ wsprovi der . Click Next.

Click the CRM Example Module check box on and click Next.

Click Finish.

5. Choose Model>Generate Model>Generate Domain
Models>Generate Service from Class.

hw

Using OptimalJ: Tutorials

1-233

OptimalJd 3.1

Figure 1-121 The CRM domain class and service models

Step 3 - Define a domain service operation

The domain service Cust oner Svc is extended with the operation

get Servi ceLevel . This domain service will be transformed into a Web
service in subsequent steps. The domain service Cust oner Svc uses a
domain view with Customer as root class. The classes Cal | and

Servi ceAgr eenent are included (byValue).

Note: You may want to create a new model package in the service model,
for example, mywebservices. This package than acts as a placeholder for
all domain services which, at the end, are deployed as Web services. In this
tutorial, the default package structure is used.

1. In the Explorer [Domain Model], expand the nodes
crm donai n. servi ce.
Right-click the domain service Cust oner Svc, and choose New
Child>DomainServiceOperation to start the Edit
DomainService wizard.

1-234

Tutorials

OptimalJd 3.1

2. Click the top Add button to add a domain service operation. In the
Name field, enter get Ser vi ceLevel and select Return Type
String.

Click the bottom Add button to add a parameter and give it the
Name custi d, Type Stri ng, Kind i n.

Figure 1-122 Edit DomainService

3. Click Finish. The expanded domain service model looks as
follows:

Using OptimalJ: Tutorials 1-235

OptimalJd 3.1

Figure 1-123 Domain service model

Step 4 - Generate models

You can now generate the application models from the domain, and from
there the integration model from the EJB application model.

1. Choose Model>Update All Models.

Note: This menu option also generates a Web model that can be useful for
testing, as you will see later. Strictly speaking it is sufficient to generate
the EJB model and the DBMS model. The DBMS model is needed if the
Web service implementation requires access to the classes in the domain

class model.

2. In the wizard, select the cr m appl i cat i on model package and
click Finish. This generates the application models.

1-236 Tutorials

OptimalJd 3.1

Figure 1-124 Generated EJB model

3. Choose Model>Generate Model>Generate Integration
Models>Generate Web Service from EJB.
4. In the wizard:

e Selectcrm appli cati on. ej b as the source and click Next.

e Selectcrmintegration. webservi ces as the target. Click
Next.

e Click Finish.

Using OptimalJ: Tutorials 1-237

OptimalJd 3.1

Figure 1-125 Generated Web services integration model

5. In the Explorer [Application Model], expand the
appl i cati on. web nodes and select the module web.

6. Inthe properties sheet, click the usedModule property and use the
Browse button to examine the value. Note the Web service server
module
crmintegration. webservices. ej bWsSer ver Modul e.

The Web service will run in the context of a Web application. The Web
module element represents this Web application. This is the reason why
the WSServerModule in the integration tier should be assigned to the
usedModule property of the Web module, before the code is generated.

The WSServerComponent element Cust orer Svc in the

i ntegration.webservi ces package, represents the Web service.
Notice that no WSServerComponent is generated for the other
EJBSessionComponent Ser vi ceAgr eenent Svc. Thiscomponent has no
business methods and therefore, it doesn't make sense to expose it as a
Web service.

1-238 Tutorials

OptimalJd 3.1

Step 5 - Enable basic authentication

The consumer of your Web service needs to provide a user name and
password to be able to use the Web service. This step shows how to enable
authentication.

Note: authentication is one of the security requirements. Verifying the
integrity of the received SOAP message and the validation of the identity
of the sender requires the use of digital signatures and certificates. The
implementation of these security requirements are not included in this
tutorial. The tutorial Integrating a Web service demonstrates how the Web
service consumer signs a SOAP message. The topic Verifying SOAP
messages provides the information for setting verifying properties within
Optimald.

1. In the Explorer[Application Model], right-click the
appl i cati on. web package and choose New
Child>WEBSecurityRole.

2. Enterrol el in the Name field and Click Finish.

3. Selectthei ntegrati on. webservi ces package.

4. Right-click the WSServerModule ej bWsSer ver Modul e and
choose Edit. Click Next.

5. Enable the security role r ol el. Click Finish.

Rol el is a role default available the t ontat - user s. xm file. The user
name and password associated with thisrolearer ol el andt ontat . The
web. xm file, which is generated as part of the next step, will contain
security and login constraint information in the <securi ty-

constrai nt > and <l ogi n- conf i g> tags. Additionally, the Axis
configuration file ser ver - confi g. wsdd contains security information
to inform the Axis engine which operations are allowed to be called.

Step 6 - Generate code, WSDL and XMLSchema files

Now that the application and integration models are defined, you can
generate and modify the code. Generating code also generates a WSDL
file for the Web service and a XMLSchema file containing the type
definitions. Security information (see previous step) is included in the
web. xm and server-confi g. wsdd files.

1. Choose Model>Generate All Code.
2. If you are prompted for the location of generated code for the ejb
module, select \ wspr ovi der\ cr nEj bCode and click Ok.

Using OptimalJ: Tutorials

1-239

OptimalJd 3.1

3. If you are prompted for the location of generated code for the web
module, select \ wspr ovi der\ cr MAébCode and click Ok.

The Web service is generated from the ej b model package. The name of
this package is used in the name of the WSDL file, ej b_t op. wsdl , the
name of the directory ej bWSSer ver Modul e and the XMLSchema file
ej bxsdschensa.

Theej b_t op. wsdl fileisalsocopiedtothe\wsprovi der\ cr mMébCode
directory. The directory ej bWSSer ver Modul e contains some code
specific for Web service integration and is located in the folder

\wspr ovi der Model \ cr mexanpl e\ crm i nt egrati on\ webservi ces

The server - confi g. wsdd file located in
\wsprovi der Model \ cr MAébCode\ VEB- | NF.

Step 7 - Implement Web service logic and compile all code

You now need to implement the Web service logic in the code generated
in the previous step. The implementation provided here is one solution,
alternatives are possible. The code is simplified a little bit.

1. In the Explorer [Application Model], right-click the
EJBSessionComponent Cust onmer Svc in the ej b package.

2. Choose Edit Free Blocks in Generated
Files>BusinessMethods>CustomerSvcBean.java>body(get
ServiceLevel

3. In the Source Editor, enter or copy the following code in the free
block:

Example: Implementation of getServicelLevel method

1] returnval ue = "Nb custoner found";

2| try {

3 crmappl i cation. g b. cust oner svc. Qust oner Dat aChj ect Gol | ecti on
| ¢ = get Al FH ndByProf i | enkey(custi d);

4| Iterator it =c.iterator();

5] while (it.hasNext()) {

6 | crmappl i cation. g b. cust oner svc. Qust oner Dat aChj ect
| cdao =

(crmappl i cation. g b. cust oner svc. Qust oner Dat alhj ect)
| it.next();

7| crmappl i cation. g b. cust oner svc. Ser vi ceAgr eenent Dat a(bj ect

1-240

Tutorials

OptimalJd 3.1

| sadao =
cdao. get Servi ceAgr eenent Ser vi ceAgr eenent Dat athj ect () ;
8 | returnVal ue = sadao. get Servi celLevel ().toSring();
9| b
10 | } catch (Exception e) {};

4. Choose File>Save to save the code change.
5. Choose Project>Compile Project to compile all code.

The method get Al | ByFi ndPr of i | eOnKey returns all
CustomerDataObjects whose key match the profile. In our case only one
customer matches, so the collection contains one CustomerDataObject.
The method get Ser vi ceAgr eenent Ser vi ceAgr eenent returns the
ServiceAgreement that is associated with the Customer (there is a 1:n
relationship between ServiceAgreement and Customer). The

get Servi ceLevel method returns an enumeration type, which is
converted to a String by thet oSt ri ng method.

Step 8 -Test the Web service

The code generated for the Web tier includes two Java Server Pages that
provide a simple user interface for the get Ser vi ceLevel operation. In
this step you use this interface to test the internal logic of the Web service
operation. Additionally you can verify if the generated WSDL file is
protected by a username and password.

Note: This step only tests the internal implementation of the Web service.

To quickly test the implementation of your Web service:

1. Start the default SOLID database.

2. Choose Test>Start Application Server. Wait for the server to
start.

3. Navigate to the getServiceLevel link:

= Click Maintenance CustomerSvc.
= Click Browse.
= Click one of the Edit buttons.
= On the toolbar at the top, click the getServiceLevel link.
On the input screen you can fill in a customer id. VValid values are
0001, 0002, 0003 and 0004. Click on Ok to get the return value.
4. Start a new browser session and enter htt p://
| ocal host: 8081/ servi ces in the Address field.

Using OptimalJ: Tutorials

1-241

OptimalJd 3.1

5. A dialog window prompts you for a user name and password.
Enterr ol el, for the User Name and t ontat for the Password.
You can now view the wsdl for the Web service created in this
tutorial.

Step 9 - Deploy the Web service

The Web service is now ready to be published. You may need to add
application server specific deployment information. You also need to
provide the URL of the Web application that hosts your Web service. The
WSDL and XMLSchema files are packaged in the web. war file.

The tutorial Integrating a Web service demonstrates how to call a Web
service.

In this tutorial you learned how to develop a Web service. The process of
developing a Web service is very similar as developing other components.
You start in the domain model with creating a domain service and, if
required, adding complex types in the class model. After that you
generate the EJB and Web models. The Web service component is
generated from the EJB model. In the integration model, you can add
security requirements for authentication and digital signatures. You can
use the Web user interface as a simple interface for internal testing of
your Web service logic. Also, when generating code for the Web module,
the file server - confi g. wsdd is created in the VEEB- | NF folder (but
only, if security features are added to the Web service).

Further reading

For more information, see the documentation on Providing a Web service
and Web service security.

1.23 Creating the application EAR

OptimalJ creates applications in accordance with the applicable J2EE,
Java, and related standards. Consequently, you can deploy your
OptimalJ applications on a wide range of application servers and
databases.

1-242

Tutorials

OptimalJd 3.1

To deploy the application you need to create an Enterprise ARchive file
(EAR file), which contains all the information an application server needs
to run the application. You can then deploy the EAR file using the
deployment tools supplied with your application server. After moving the
EAR file to the target platform, you can add it to the application server?s
configuration, and deploy the application quickly and easily. OptimalJ?s
Assembly Workbench utility helps you create EAR files.

Prerequisites

= This tutorial assumes that you previously followed the tutorial
Importing a domain model. If you did not follow this tutorial, you can
use another application that you have created and tested with
OptimalJ.

= You must be familiar with the basic development features of
OptimalJ.

Duration
This tutorial takes less than half an hour to complete.

Objectives

This tutorial shows you the steps needed to create an Enterprise ARchive
file (EAR file). The EAR file contains JAR, WAR and other archives (like
the optional DAR file), needed to deploy an enterprise application. You
can then deploy the EAR file using the deployment tools supplied with
your application server.

Step 1 ? Explore the application archive files

Enterprise archive files require several modules from your application.
This step shows you where the individual archives are located in your
application. The . j ar, . war and . dar files are needed to create the
enterprise archive file that you are going to deploy.

1. From the menu, select Project>Project Manager.

Using OptimalJ: Tutorials 1-243

OptimalJd 3.1

2. Select the project that contains the application created when
following the tutorial Importing a domain model. Click Open.

Note: The package and path names in this tutorial assume that you're
using the project from the Importing a domain model tutorial. If you are
using a different project for this tutorial, substitute the appropriate
package and path names.

w

Go to Explorer [Code Model].

4. Expand the nodes nodel package. appl i cati on. dbms.

The dbms package contains a Database Archive file with .
extension . dar .

Note: The DAR file is specific to OptimalJ. This file is used to create the
database tables in the OptimalJ test environment. This file is not intended
for use in deployment environments external to OptimalJ. For other
deployment environments, such as Sun? ONE Application Server
(formerly iPlanet), the database tables need to be created using the
OptimalJd SQL Workbench, or other database-specific tools.

5. Expand the nodes nodel package. appl i cati on. ej b.
The ejb package contains a Java Archive file called ej b. By
default, the Explorer [Code Model] does not display the . j ar
extension for this file.

6. Expand the nodes nodel package. appl i cati on. web.
The Web package contains a Web ARchive file with extension
.war .

Step 2 ? Create the EAR definition file

The contents of the EAR file are stored in an EAR definition file. The
EAR definition file also specifies if the ej b. j ar file included in the EAR
file should be customized for a specific application server.

1. From the menu, select Deploy>Start Assembly Workbench.

2. In the File Name field, enter the name of the EAR file you want
to create, for example, MyDepl oy.

3. Use the center pane of the Select/create Enterprise Archive wizard
to select the directory in which to create the file.
Select \ nodel package.

4. Click Create.

1-244 Tutorials

OptimalJd 3.1

Go to the Explorer[Code model] tab. The MyDepl oy EAR

definition file is added to \ nodel package directory. [
5. The Source Editor window of Assembly Workbench allows you to

edit the EAR file.

The MyDeploy tab (matches the name of your EAR definition file)
contains the high-level options for the EAR file, such as icons and
descriptions.

Some versions of certain application servers require special
customizations to the ej b. j ar file that is packaged in an EAR
file. If you see your application server listed on this tab, click the
corresponding button. When you compile the EAR definition file,
OptimalJ will perform any required customizations to the

ej b. j ar file, corresponding to the application servers you
specified. The customized ej b. j ar is packaged in the EAR file.

Note: Select the WebSphere button for all supported WebSphere versions,
not just 5.

Figure 1-126 EAR definition settings

Using OptimalJ: Tutorials 1-245

OptimalJd 3.1

6. Click the Modules tab. Click Add Module to add a module to the
archive.

7. Click the Fi | e Nane field, and then click the Browse button. -

8. Browse to\ nodel package\ appl i cati on\ ej b and select the
fileejb.jar.

Note: Two-tier applications that do not have an ej b. j ar file and can
skip this step.

9. Add another module to the archive. Click Add Module, click the
browse button for the Fi | e Nane field and select the web. war file
located in \ nodel package\ appl i cati on\ web.

When the web. war module is selected, the Context root field is
available to set the context root of the deployed application.

Figure 1-127 MyDeploy EAR definition file with two modules

Note: The module types are updated automatically.

10. Click the OtherFiles tab.
11. Click Add OtherFile.
12. Click the Other file field, and then click the Browse button.

1-246 Tutorials

OptimalJd 3.1

13. Browse to \ nodel package\ appl i cati on\ dbns and select the
file rodel package. dar .
14. In the Description field enter dbmrs.

Note: The . dar file needs to be included as ‘other files' because it is
specific to OptimalJ; other deployment environments do not use this file.

15. The EJB module, ej b. j ar, is dependent on the
al turalibDepl oyEJB. j ar that is included in your OptimalJ
installation. To accommodate this dependency, you must add the
Optimal J_Installation/libDeploy/
al turalibDepl oyEJB. j ar to your EAR definition.
Click Add OtherFile toadd athe al t ur al i bDepl oyEJB. j ar file
to the archive.

Note: Two-tier applications that do not have an ej b. j ar file and can
skip this step.

16. Click the Other file field, and then click the Browse button.

17.Browse to Opti mal J_Instal | ati on/1i bDepl oy, where
OptimalJ_Installation is the location of your OptimalJ
installation, and select the file al t ur al i bDepl oyEJB. j ar.

18. In the Description field enter Depl oy EJB.

19. Close the MyDeploy Assembly Workbench window, and click Save
when prompted.

Step 3 ? Compile the EAR file

Once the EAR definition file is created, you can generate the EAR file at
any time by compiling the EAR definition file. When you perform a
compile or build operation on a directory that contains the EAR definition
file, OptimalJ compiles the EAR definition file as well.

Note: Depending on the location of your EAR definition file relative to
your EJB and Web archives, OptimalJd may compile the EAR definition
file before it compiles the ej b. j ar and web. war files. As a recommended
practice, always manually recompile the EAR definition file after you
perform a compile or build on you project.

Using OptimalJ: Tutorials

1-247

OptimalJd 3.1

1. Before using the MyDepl oy EAR Definition file, you need to
compile it into an . ear file.
In the Explorer[Code model] window, right-click MyDepl oy and
select Compile. The MyDepl oy. ear file is added to
\ nodel package directory.

Note: During EAR compilation, OptimalJ may customize the ej b. j ar
and web. war archives to match your chosen application server (for
example, WebSphere). If OptimalJ's integrated test environment is
configured to use a different application server (for example, JBoss), it
may not be able to use the customized archives. Delete the ej b. j ar and
web. war archives and recompile your project before testing your project
in the integrated test environment.

This tutorial guided you through the steps required to package an
OptimalJ application. The tutorial steps can vary when, for example, you
add your own modules in the Assembly Workbench, or when you edit the
deployment descriptors of your application. You have created an EAR file
that can be deployed on the default application server. To deploy an EAR
on another J2EE-compliant application servers, additionally you need to
create the server-specific deployment descriptors. For more information
about how to create deployment information for various application
servers, see Generating EJB deployment descriptors.

At runtime, all OptimalJ applications require classes in the
Optimal J_Installation/libDeploy/

al turalibDepl oyApplication.jar file. When deploying your
application to your application server, you should add this file to the
classpath of the application server. This step is covered in the
deployment procedures for each specific application server.

Refer to the other topics on deployment for procedures for specific
application servers.

Further reading

For more information, see the documentation on Deploying an
application.

1-248

Tutorials

OptimalJd 3.1

1.24 Creating your own technical key generator

OptimalJ's technology patterns generate technical keys at application
model level, when the domain classes do not have a primary domain
unique constraints. The code generated from the application models
implements a Universal Unique Identifier (UUI) as a 32 digit string for
the technical key.

OptimalJ's implementation of the technical key is configured through a
setting in the Fact orySet ti ngs. properti es file. The technical key
generator implements the PrimaryKeyGenerator interface and uses the
singleton pattern to improve performance by having only one key
generator object.

You can implement your own technical key generator to create unique
values that identify an instance of a class.

Prerequisites

= You are familiar with the basic development features of OptimalJ and
have followed the tutorial Creating a two-tier application (DAO
component).

Duration
This tutorial takes approximately 30 minutes to complete.

Obijectives

This tutorial extends the application generated in the tutorial Creating a
two-tier application (DAO component), so you first import the application
and then you implement your own technical key generator class. Finally
you make the key fields visible on your JSPs to visualize the values.

Step 1 - Prepare the filesystem
Location for the project files.
In your file system, create the following directory:

1. \Opti mal J\t echni cal key?this directory will hold the
imported application.

In this tutorial, you only create one directory because the application
export file recreates the model structure and the code under the given
folder.

Using OptimalJ: Tutorials

1-249

OptimalJd 3.1

Step 2 - Create a new project
It is convenient to perform each tutorial in a new project.
To create a new project use the Project Manager wizard.

1. On the menu, select Project>Project Manager and click New.
2. Set the project name to t echni cal key and Click OK.

Note: You create an empty project.

3. Inthe Explorer [Code Model], right-click Code Model and choose
Mount>Archive files.

4. Browseto OptimalJ Installation directory\src,select
al turalib-src. zi p and click Finish.

Note: al turalib-src. zi p contains code sources for the key generator
and configuration files.

This way you created an empty project for the application.

Your technicalkey project contains all the OptimalJ environment except
the mounted folders.

Step 3 - Import the application

The two-tier application is based on CRM using DAO components. The
application was created by importing from UML in a two-tier structure
(Web and DBMS) supporting access to the data through DAO.

An application export contains the results of the tutorial Creating a two-
tier application (DAO component).

Import the application.

1. On the menu, select Model>Import Application. Browse to
OptinmalJ installation
directory\docs\tutorial\crntwotier.zip.

2. Select the destination directory. Enter
\ Opti mal J\t echni cal key as the directory in which to import
the application.

This tutorial focuses on the changes in the code level for the technical key
implementation, therefore an application import is your starting point to
extending the code model.

1-250

Tutorials

OptimalJd 3.1

Another option is to start from the project TwoTierApplication, if you
have performed the tutorial.

You can also choose to do your own implementation in another project.

Step 4 - Create your own java implementation for the technical key

The application uses a technical key generator created by OptimalJ
implementation patterns. You can find the
Basi cPri maryKeyGenerator.javainalturalib-src. zip.

Create the Techni cal KeyGener at or . j ava to implement the
PrimaryKeyGenerator interface, and then change the KeyGenerator
factory setting.

1. In the Explorer [Code Model], navigate to
crntwoti er. nodel . appli cati on, right-click appl i cati on
and choose New>Java Class.

2. In the New Wizard - Java Class wizard, enter
TechKeyGener at or as the name of the object. Click Finish.

3. In the Source Editor window, add the code to implement the
PrimaryKeyGenerator interface. Replace the code of the file with
the following example.

1| package crmiwotier.application;

2| inport comconpuware. al turadev. application. Pri naryKeyGenerator;

3] /*
4] >
| TechKeyGener at or . j ava
5] =
6| * Very sinple keygenerator for denonstrati on purposes
7] *

| Bevare that since the techkeygenerator never saves it
| state
8| * it wll generate the sane nunber whenever it is restarted

9| */
10 | public
| class TechkeyGenerator inplenents PrinarykKeyGenerator {
11 |
12 | private
| static PrinarykeyGenerator singleton = new TechKeyGenerator();
13 | private

| static int counter = 0;

Using OptimalJ: Tutorials 1-251

OptimalJd 3.1

14 |
15 | [**
16 | * This nethod returns a singleton reference to the
| one and only si npl epri mar ykey generat or
17 | * (this nethod is used by the nfigurabl eFact ory)
18 | *
| @eturn the singleton inpl enentation of the prinary
| key generat or
19 | */
20 | public static PrinaryKeyGnerator getlnstance() {
21 | return singl eton;
22 | }
23 |
24 | public Sring getlhi quekey((j ect sourceChj ect) {
25 | SringBuffer key = new SringBuf fer ("AutoTechkey");
26 | count er ++;
27 | if
| (count er<100) key. append("0");
28 | if (counter< 10) key.append("0");
29 | key. append(counter);
30 | return key.toring();
31| }
321}

4. On the menu, select File>Save.
5. Right-click the Source Editor and choose Compile.

Notice the get | nst ance() method, the technical key generator uses a
singleton.

Step 5 - Include your technical key generator in the module

To use your technical key generator in the application, you need to
included it in the deployable units (war, jar) files.

For this application, there is only one deployable unit, the web.war.

1. In the Explorer [Application Model], navigate
tocrntwoti er. appl i cati on. web and select the web module.
2. In the Properties window, select the containedFiles, and click
Browse.

1-252 Tutorials

OptimalJd 3.1

3. Click Add and enter / crntwot i er/ application/
TechKeyGener at or. cl ass.

Note: The separator is the forward slash. Also used at the beginning to
define the root package.

4. Click OK twice.

By adding the file to the containedFiles property, the class is included in
the WAR file.

Step 6 - Return youir file in the factory for the key generator
The code defines a factory object configurable in the properties file.

1. In the Explorer [Code Model], select the folder
\ Opti mal J\'t echni cal key\ webcode, browse to the V\EB-
I NF\ C asses\ com conpuwar e\ al t ur adev\ appl i cati on.

2. Open the Fact orySetti ngs. properti es, select the
KeyGenerator.

3. Entercrntwotier. application. TechKeyGener at or for the
Value of KeyGenerator.

Note: In the properties file, the separator is the dot.

4. From the menu, select File>Save to save the changes.

By changing the FactorySetting.properties you specified the class to
use for the technical key generator.

Step 7 - Make the uniqueld attributes visible

In order to view the values of the technical key generator, make the
uniqueld attributes visible in the Web pages.

Technical key do not have a meaningful value for the business, so they
are hidden.

1. In the Explorer [Application Model], navigate to
crntwotier.application.web. servi ceagreenent. Servic
eAgr eerment . uni quel d web data attribute.

2. In the properties windows, select the readAllowed property and
change to Tr ue by double-clicking the property.

Using OptimalJ: Tutorials

1-253

OptimalJd 3.1

3. Select the webtype property and change the value from
Dat aTypes. webDat aTypes. HTM_I nput Hi dden to
Dat aTypes. webDat aTypes. Stri ng.

4. Repeat the above steps for all uniqueld fields you want to see in
the JSP.

5. Navigate tocrntwoti er. appli cati on. web, right-click web
and choose Generate Code.

Note: Since you only modified Web model elements, you do not need to
generate all the code, generating the code for the Web model is efficient.

6. In the Explorer [CodeModel], right-click cr nt wot i er and choose
Build All.

Technical keys are per definition technical implementations of
uniqueness for the instances, so they do not have a meaning for the
application user. OptimalJ's transformation patterns generate the
corresponding attributes in the web data classes as hidden types.

You change the presentation type of the attribute as well as is accessor
property to enable the JSP to show it.

Additionally, you generated code only for a model using the pop-up menu.
This option exclusively generates code for the hierarchy under the model
element, it does not invoke a model checker.

Finally, you used the Build All option to compile the project. The build
option first removes compiled files then compile the sources living you a
clean build.

Step 8 - Test the application
Test the application by navigating and adding new records.
You need to start the environment where your application executes.

1. From the menu Test>Start Application Server.

2. In the browser, click ServiceAgreement.

3. Click New. Note the uniqueld field is visible and displays the
value Aut oTechKey001

Note: The Aut oTechKey001 is the first value defined in your technical
key generator implementation.

1-254

Tutorials

OptimalJd 3.1

You implemented a singleton in your technical key generator, but your
class does not save its state. Therefore every time you start the server the
number generated will be Aut oTechKey001.

On top of an imported application, you created your own implementation
of the technical key generator by implementing the
PrimaryKeyGenerator interface, and using the singleton pattern. Then
you configured the factory KeyGener at or to use your class.

Finally, to visualize the values of the technical key uni quel d on the JSP,
you changed data type and the access property of the web attributes.

Further reading

For more information, see also Generation of technical keys under the
code model.

1.25 Creating Implementation Patterns

Implementation patterns enable you to define the code generated from
an application model. You can influence or replace the code generated by
OptimalJ's default implementation patterns!

In this tutorial you create an implementation pattern called WebHelper
that generates utility classes for WEB components - so this
implementation pattern works with the default WEB implementation
pattern provided with OptimalJ. The utility classes provide a framework
for logging and encrypting data. Instead of handling the logging and
encryption during this tutorial, the pattern only creates an empty class
with free blocks for logging and encryption code.

Prerequisites

This tutorial is intended for developers and architects starting to use
OptimalJ's implementation pattern features.

You must have a strong grasp of the OptimalJ application and domain
models, and a good understanding of the tools used to develop
implementation patterns.

You should be familiar with the MDA architecture, and the role played
by implementation patterns in this architecture.

Using OptimalJ: Tutorials

1-255

OptimalJd 3.1

Above all, you must have considerable knowledge of the target
application type and implementation language. For example, to create an
implementation pattern for applications using EJBs, you must be an
expert in the design and construction of EJBs. The target application
type in this tutorial is J2SE.

Duration

This tutorial takes approximately half an hour to complete.

Objectives

At the end of this tutorial you understand the essential concepts and
tasks for developing implementation patterns, and have enough
knowledge to continue learning about implementation pattern
development independently.

You use the following features of OptimalJ in this tutorial:

Explorer [Meta Model]?browses through the metamodels that define
the features of the domain and application models.

Explorer [Transformation Model]?houses your transformation
models.

Transformation models define the high level structure of your
implementation pattern.

Code generation framework?OptimalJ creates a code generator for
your implementation pattern from the transformation model. The
code generation framework has built-in features for free and guarded
blocks, model-to-code navigation, management of generated files,
inter-pattern collaboration, and so on.

You can build the code generator using TPL, Java, or a combination
of these two languages.

TPL language?TPL is a easy-to-learn language that enables you to
construct your implementation pattern declaratively. TPL hides the
details of interacting with the code generation framework behind
simple statements, freeing you to concentrate on developing your
pattern.

TPL editor and compiler?the TPL editor provides syntax
highlighting and guarded block support, so you are protected from
overwriting code generated from your transformation model. The TPL
compiler converts your TPL code into a code generator.

You can install your new code generator into OptimalJ with the click
of a single button.

1-256

Tutorials

OptimalJd 3.1

= Javadoc?OptimalJ provides Javadoc for the code generation and
repository APIs. To view this Javadoc, select View>Documentation
Indices>OptimalJ API.

Code generation API?if you prefer to create implementation
patterns using Java, a code generation API is provided enabling
this.

Repository AP1?the API of the OptimalJ repository is also
provided - this Javadoc provides the same information as can be
found by using the Explorer [Meta Model].

Step 1 - Create an implementation pattern package structure

All models, including transformation models, are structured inside
packages. In this tutorial, a single package is sufficient.

1.
1.

2.

Create a new Architecture Edition project:
Start the New OptimalJ Project wizard by selecting
Project>New OptimalJ Project.

Name the project | npl ement ati onPatt ernTut ori al . Click
Next.

Select Experiment with One or More Example Models. Click
Next.

Select CRM Examples (Sample Domain Model), and click
Next.

Select OptimalJ Metamodel Sources, and click Finish.

Note: In any architecture edition project, the metamodel sources must be
mounted.

In the Explorer [Transformation Model], select the
Transformation node and choose Popup Menu>New
TransformationPackage.

Name the package webhel per.

Click Finish.

Step 2 - Create an implementation pattern module

Implementation pattern modules define the deployment unit of your
pattern. When you compile and install your pattern, it is the module (and
all of the objects that it contains) that is installed.

Using OptimalJ: Tutorials

1-257

OptimalJd 3.1

1. Select the webhel per package, and choose Popup Menu>New
Child>ImplementationPatternModule.

2. Name the new module webhel per Modul e.

3. Click Finish.

Step 3 - Create implementation patterns

| mpl ement at i onPat t er n objects define the model features for which
you wish to generate code. Each | npl errent at i onPat t er n object
specifies a model feature for which code is to be generated. Your
implementation pattern as a whole is defined as a set of

| mpl enent at i onPat t er n objects belonging to a module.

1. Select the webhel per package, and choose Popup Menu>New
Child>ImplementationPattern.
2. Set the following properties:

< Name the new pattern object W\ebhel per Pat t er n.
= Ensure that the pattern object belongs to the module
webhel per Modul e.
= Ensure that the patternLanguage is TPL (this is the default).
= Set the source to WEB. \EBConponent .

Note: Setting source to WEBComponent indicates that this pattern object
generates code for each WEBComponent in the Web model. This is
appropriate, as you are generating a utility class for each
WEBComponent.

3. Click Finish.

Step 4 - Generate code

Your transformation model is complete, and you can now generate code
from your model. The generated code includes deployment code to
register the pattern in OptimalJ, and TPL and Java files you can use to
implement your pattern.

1. Select the webhel per package and choose Popup
Menu>Generate Code.

1-258

Tutorials

OptimalJd 3.1

Step 5 - Edit the generated TPL

In this step you define a TPL template containing the skeleton code of a
Java class, and some TPL expressions to insert values from the Web

model.
1.

2.

1]
2|
I
31
4|
I
51
6|
I
71
8 |
9|
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |

Select Webhel per Pat t er n and choose Popup Menu>Open
WebhelperPattern.tpl. This opens the generated TPL file for
Webhel per Patt ern.

Change the lines from [TEMPLATE. . . to[/ TEMPLATE] to specify
skeleton code for the utility class. Use the following code:

[TBVPLATE PLBLI C VEBHELPERPATTER\ VEBConponent WEBGonponent)]
Generating
VEB-E_PER code for [wEBConponent . nane()]
[F LK " Vébhel per Pattern")] [wEBGonponent . nane()] Wil .javal/F L
[GUARY(" VEEBHEL PERPATTERN',
WEBGnponent)]
package [wEBGonponent . ref Parent (). get Ref Qual i fi edNane()];
/1 add
your inport statenents here
class [wEBGonponent . nane()] Wil {
void log() {
//add | oggi ng code here
}
Sring encrypt(Sring s) {
//add encryption code here
return s;
}
//add you own net hods here.
}
[/GAD
[/ TBVPLATH
For more information on TPL statements, see TPL syntax.
Import the Ref Cbj ect class obtained using
WEBConponent . r ef Par ent (), and which is used to calculate the

package name of the Java class. A Ref Obj ect is a generic object
that represents repository objects:

Using OptimalJ: Tutorials

1-259

OptimalJd 3.1

[MPGRT com conpuvar e. reposi tory. refl ective. Ref (oj ect]

Note: Learn more about the features of WEBComponent and RefObject in
the API Javadoc.

Step 6 - Add free blocks

The implementation pattern now defines the desired utility class.
However, the skeleton code lacks free blocks, so users of your
implementation pattern lose their code every time they regenerate their
code model!

1. To solve this problem, add free blocks around the / / add. . .
comments.

2. Each free block inside a template must have a different name. Use
the prefix webhel per: in the free block name to group all your
free blocks under one heading in the model-to-code pop-up menu.

Your TPL code should be similar to the following:

[FREH(" webhel per:inports")]

//add your inport statenents here

[/ FREH
This creates the following model-to-code navigation sequence:
WEBComponent Popup Menu>Edit Free Blocks in
Generated

Files>webhelper>WEBComponentNameUtil. java>FreeBlo
ckName

Step 7 - Install and test the pattern

Install and test your implementation pattern, by compiling your code and
installing the pattern in OptimalJ.
1. Change to the Explorer [Code Model].
2. Select Mount Poi nt / webhel per/
webhel per Modul eTpModul e. xm nof and choose Pop-up
Menu>Execute. This compiles your pattern and installs it in
OptimalJ.

For more information, see Compiling an implementation pattern
and Testing an implementation pattern.

1-260

Tutorials

OptimalJd 3.1

3. Generate code for your Web model: the WebHelper pattern
generates the utility classes for each WEBComponent.

Note: When you generate code, you can receive a message that your
software factory has changed. You receive this notice when you have
generated code, and then change the set of active implementation patterns.
This change could affect the code you have previously generated, so
OptimalJd notifies you and gives you the opportunity to cancel the code
generation action. For more information, see Software factory.

4. You can now havigate from Web components to the utility classes
using the navigation sequence:

WEBComponent Popup Menu>Edit Free Blocks in
Generated
Files>WebHelper>WEBComponentNameUtil.java>FreeBlo
ckName

5. Addsome code to the free blocks, and regenerate code for your Web
model. Verify that your free block code is preserved correctly.

In this tutorial you have created a new implementation pattern that
creates a simple utility class for Web components. Your code is generated
in addition to the other code generated for Web components.

Further reading

However, you have not influenced the behavior of the default Web
pattern. Your code is never called from the default Web component files,
unless these files are modified to call the new code. While the WebHelper
pattern is useful, it requires more work to integrate its code into the code
generated by the default Web pattern. You can achieve this effect by
learning more about pattern collaboration and the join points provided by
the OptimalJd implementation patterns.

Using OptimalJ: Tutorials 1-261

OptimalJd 3.1

1.26 Creating technology patterns

Technology patterns enable you to map definitions in models, so that
changes in one model (the source model) can be applied as updates to the
target model. For example, the DBMS technology pattern maps domain
class model elements to DBMS model elements. Using the DBMS
technology pattern, you can create a DBMS model from the domain class
model, and then update the DBMS model in response to changes in the
domain class model.

Technology patterns are defined in OptimalJ using the transformation
model. Java code is generated from this model, and the code is compiled
into an OptimalJ module (plug-in).

The code generated from the transformation model conforms to the
incremental copier API. You can use this API to define the
transformation rules for your technology pattern. For more information
about incremental copiers, see Incremental copiers.

In this tutorial you create a technology pattern called ServiceToEJB that
maps DomainServices to EJBSessionComponents. The pattern also
specifies that the EJBSessionComponents should have the following:

= A BusinessMethod for each DomainServiceOperation defined in the
source DomainService.

< A BusinessMethod named st art () which takes no parameters and
does not provide a return value. (This method claims some resources
to be used by the component.)

= A BusinessMethod named st op() which takes no parameters and
does not provide a return value. (This method releases some resources
used by the component.)

< Atag named Ser vi ceToEJB with the value of t r ue. This tag can be
used by an implementation pattern to generate code specific to
EJBSessionComponents created by the ServiceToEJB technology
pattern.

= The package structure of the source model should be reflected by the
target model (so sub-packages of the service package should be
mapped to sub-packages of the EJB package).

These requirements are known as transformation rules.

The following diagram shows the overall transformation specified by the
ServiceToEJB pattern. The numbers in the diagram correspond to the
steps in this tutorial which implement that part of the transformation.

1-262

Tutorials

OptimalJd 3.1

Figure 1-128 ServiceToEJB technology pattern.

Note: The pattern also creates an EJBModule and Remotelnterfaces
(required by the EJB model checker). These are omitted from the diagram
for clarity. The rules to map the EJBModule are covered in step 18 of this
tutorial. Remotelnterfaces are mapped in step 12.

Prerequisites
This tutorial is intended for developers and architects starting to use
OptimalJ's technology pattern features.

You must have a strong grasp of the OptimalJ application and domain
models, and a good understanding of the tools used to develop technology
patterns.

Using OptimalJ: Tutorials 1-263

OptimalJd 3.1

You should be familiar with the MDA architecture, and the role played
by transformation patterns in this architecture.

Duration
This tutorial takes approximately two hours to complete.

Objectives

At the end of this tutorial you understand the essential concepts and
tasks for developing technology patterns, and have enough knowledge to
continue learning about technology pattern development independently.

Step 1 - Create a technology pattern package structure

All models, including technology pattern models, are structured inside
packages. In this tutorial, a single package is sufficient.

1. Create a new Architecture Edition project:

1. Start the New OptimalJ Project wizard by selecting
Project>New OptimalJ Project.

2. Name the project Technol ogyPat t er nTut ori al . Click Next.

3. Select Experiment with One or More Example Models. Click
Next.

4. Select CRM Examples (Sample Domain Model), and click
Next.

5. Select OptimalJd Metamodel Sources, and click Finish.

Note: In any architecture edition project, the metamodel sources must be
mounted.

6. In the Explorer [Transformation Model], select the
Transformation node and choose Popup Menu>New
TransformationPackage.

7. Name the package ser vi cet oej b.

8. Click Finish.

1-264

Tutorials

OptimalJd 3.1

Step 2 - Create a technology pattern module

Technology pattern modules define the deployment unit of your pattern.
The module assembles a group of TechnologyPattern objects into an
OptimalJ plug-in. When you compile and install your pattern, it is the
TechnologyPatternModule and its associated TechnologyPatterns that is
installed.

1.

2.
3.

Select the servi cet oej b package, and choose Popup
Menu>New Child>TechnologyPatternModule.
Name the new module Ser vi ceToEJBMbdul e.

Click Finish.

Step 3 - Create technology patterns

TechnologyPattern objects define a mapping between a source and a
target model package, and provide rules to define mappings for the
children of the model packages.

1.

2.

3.

Select the servi cet oej b package, and choose Popup
Menu>New Child>TechnologyPattern.
Set the following properties:

Name - Ser vi ceToEJBPat t er n.
module - Ser vi ceToEJBMdul e.

Click Finish.

Step 4 - Generate code

Your technology pattern model is complete, and you can now generate
code from your model. The generated code includes deployment code to
register the pattern in OptimalJ, and Java files you can use to implement
your pattern.

1.

Select the servi cet oej b package and choose Popup
Menu>Generate Code.

Step 5 - Edit the generated code

1.

3.

Select Ser vi ceToEJBPat t er n and choose Popup Menu>Open
ServiceToEJBPattern.java. This opens the generated Java file
for Servi ceToEJBPat t er n.

Servi ceToEJBPat t er n. j ava is an incremental copier. For more
information on the structure of an incremental copier file, see
Structure of an incremental copier.

Add these import statements to Ser vi ceToEJBPat t ern. j ava:

Using OptimalJ: Tutorials

1-265

OptimalJd 3.1

1|
2|
3|
4|
5]
6 |
7|
8 |
9|
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |

19 |

20 |
21 |

22 |
I

[IWility classes
i nport comconpuvare. al turadev.cmutils. Gntent H | t er Manager ;
i npor t
com conpuvar e. al t ur adev. nodel s. opti nal Foundati on. GontentFH | ter;
i npor t
com conpuvar e. corbal i brary. types. Q assUi st;
i nport com conpuwvar e. al t ur adev. nodel s. opt i nal Foundat i on.
col | ections. AturaPatternSet;
i nport com conpuwvar e. al t ur adev. nodel s. opt i nal Foundat i on.
col | ections. Al t uraMappi ngBaselli st ;
i nport com conpuwvar e. al t ur adev. nodel s. opt i nal Foundat i on.
A t ur aMappi ng;
/1 Sour ce nodel el enent s
i nport com conpuvar e. al t ur adev. nodel s. donai nSer vi ces. Donai nSer vi ce;
i npor t
com conpuvar e. al t ur adev. nodel s. donai nSer vi ces. Donai nSer vi ce(per at i on;
i npor t
com conpuvar e. al t ur adev. nodel s. donai nSer vi ces. Donai nSer vi cePar anet er;
i nport
com conpuvar e. al t uradev. nodel s. opti nal Foundat i on. Donai nH enent ;
i nport
com conpuvar e. al t uradev. nodel s. opti nal Foundat i on. Al turaH enent ;
i nport
com conpuvar e. al t ur adev. nodel s. donai nDat aTypes. Donai nDat aType;
i npor t
com conpuvar e. al t ur adev. nodel s. donai nSer vi ces. Servi centent H | ter;
/] Tar get
nodel el ement s
i nport com conpuvar e. al t ur adev. nodel s. eJB. EJBMbdul €;
i nport com conpuvar e. al t ur adev. nodel s. eJB. EJBSessi onConponent ;
i nport
com conpuver e. al t ur adev. nodel s. eJB. Busi nessMet hod;
i nport com conpuwvar e. al t ur adev. nodel s. eJB. EJBGnponent Par anet er ;
i npor t
com conpuvar e. al t ur adev. nodel s. eJB. Renot el nt er f ace;
i nport com conpuvar e. al t ur adev. nodel s. opt i nal Foundat i on.

Appl i cationH enent ;

1-266

Tutorials

OptimalJd 3.1

23 | inport comconpuvare. al t uradev. nodel s. opti nal Foundat i on.
| Tag;
24 | inport comconpuvare. al t uradev. nodel s. eJBDat aTypes. EJBDat aType;
25| inport
| comconpuwar e. al t uradev. nodel s. eJB F bContentFH | ter;
4. In the Explorer [Code Model] mount the following JARS:

= OptimalJlnstallationDirectory/ nodul es/
oj Domai nServi ce. j ar

These JARs contain the objects referred to by the above i nport
statements.

Step 6 - Constrain the source and target packages

The transformation model only allows you to define the source and target
types for a TechnologyPattern (in this case, the pattern maps a
ModelPackage to a ModelPackage). However, you need to further
constrain this, so that the pattern can only be applied to source models
that contains domain service model elements, and to target models that
contain EJB model elements.

OptimalJ calls the incremental copier method canCopy() to determine
if an incremental copier can be applied to a given source and target pair.

1. InServi ceToEJBPatt ern. j ava, select the method canCopy()
and replace it with the following code:

1| public bool ean canCopy(Ref (bj ect source, Ref (bj ect target)

I {

2| return (

3] source i nstanceof Mbdel Package

4| & ((Mbdel Package) source). content H I ter()
| i nstanceof ServiceCntentF | ter

5] &% target instanceof Mbdel Package

6 | &8 ((Mdel Package)target).contentFilter()

| i nstanceof H bContentFHlter);
71}

Step 7 - Define rule: ModelPackage maps to ModelPackage

ServiceToEJB maps sub-packages of the service package to sub-packages
of the EJB package. Define this rule by adding a get Chi | dC asses()
method to Ser vi ceToEJBPatt ern. j ava.

Using OptimalJ: Tutorials

1-267

OptimalJd 3.1

For more information on getChildClasses() rules, see getChildClasses()
rules.

1. InServiceToEJBPattern.java, insert the following method
directly after the canCopy() method:

20 /1--
| getChildd asses() rules

3| //-- These rul es nap source nodel elenents to target nodel

| elenents
A | m e m
5|
6 | | **
| Decl ares that a source Mbdel Package naps to a target Mbdel Package.
(Y
7 | public dass getChildd asses(Mdel Package source,
8 | Sring r ef er enceNane,
I
9| Mbdel Package sour ceParent,
I
10 | Mbdel Package t ar get Par ent)
I {
11| return Mdel Package. cl ass;
121}

Step 8 - Define rule: DomainService maps to EJBSessionComponent

ServiceToEJB maps each DomainService to an EJBSessionComponent.
Define this rule by adding another getChildClasses() rule.
1. In ServiceToEJBPattern.java, insert the following method:
1| /** Donai nService naps to a target EIBSessi onConponent .
I !
2| public Aass getChildd asses(Donai nServi ce sour ce,
3 Sring r ef er enceNane,
I
4| Mbdel Package sour ceParent,

1-268 Tutorials

OptimalJd 3.1

5 Mbdel Package target Parent)
I {

6 | return EJBSessi onConponent . cl ass;

71}

Step 9 - Define rule: DomainOperation maps to BusinessMethod

ServiceToEJB maps each DomainServiceOperation to a
BusinessMethod. Define this rule by adding another getChildClasses()
rule.

1. In ServiceToEJBPattern.java, insert the following method:
1| /** Donai nServi ceCperation naps to a target Busi nessMet hod.
(Y
2| public Aass getChildd asses(Domai nServi ceQper ati on sour ce,

3| Sring r ef er enceNane,
I

4| Donai nServi ce sour cePar ent ,
I

5| EJBSessi onGonponent target Parent)
I {

6 | return Busi nessMet hod. cl ass;

71}

Step 10 - Define rule: DomainServiceParameter maps to
EJBComponentParameter

Map the parameters of the DomainServiceOperation to
EJBComponentParameters.

1. InServiceToEJBPattern.java, insert the following method:

1| /** Donai nServiceParaneter naps to a target EIBOonponent Par angt er .
)

2| public dass getChil dd asses(Donai nServi cePar anet er sour ce,

3 Sring r ef er enceNane,
I

4| Donai nSer vi ceQper ati on sour cePar ent
I

5] Busi nessMet hod target Parent)

Using OptimalJ: Tutorials 1-269

OptimalJd 3.1

I {

6 | ret urn EJBOonponent Par anet er . cl ass;

71}

Step 11 - Define rule: DomainService maps to two BusinessMethods,
a Tag, and a Remotelnterface

For each EJBSessionComponent mapped by ServiceToEJB, there should
be start () and st op() BusinessMethods, and a Tag named

Ser vi ceToEJB. A Remotelnterface should also be provided for the
EJBSessionComponent.

This step uses the Empty type as a source object to indicate that the
target types should be mapped whenever a DomainService is mapped to
an EJBSessionComponent.

The rule calls a super DeepCopyChi | d() method to indicate that the
DomainService maps to children of the EJBSessionComponent. For more
information about establishing mappings manually, see Mapping target
objects manually.
1. In ServiceToEJBPattern.java, insert the following method:
1| /** Donai nService naps to children of EJBSessi onConponent .
I *l

2| public dass getChildd asses(Enpty sour ce,
I
3] Sring r ef erenceNane,
I
4| Donai nServi ce sour ceParent ,
I
5 EJBSessi onGnponent t ar get Parent)
I {
6 | /I super DeepQopyChi | d() copies a source el enent to
7| [/children of the targetParent.
8 | //1n this case we are copying the sourceParent el enent
9| /1to
| children of targetParent.
10 | super DeepQopyChi | d(sour ceParent, "feature", targetParent);
11 | super DeepCopyChi | d(sour cePar ent ,
| "taggedval ue", targetParent);
12 | super DeepCopyChi | d(sour ceParent, "nani festati on”, targetParent);
1-270 Tutorials

OptimalJd 3.1

13| return
| nul | ;
141}

Step 12 - Define rule: EJBSessionComponent has a BusinessMethod
named start(), a Tag named ServiceToEJB, and a Remotelnterface

For each EJBSessionComponent mapped by ServiceToEJB, there should
be astart () BusinessMethod and a Tag named ServiceToEJB.

This step defines a rule that is called as a result of step 11, which maps
DomainService to children of EJBSessionComponent. (If the rule defined
in step 11 is deleted, the rule below would never be executed).

1. In ServiceToEJBPattern.java, insert the following method:
1| /** Donai nService naps to: BusinessMethod, and Tag. */

2| public
| d ass get Chi | dd asses(Domai nSer vi ce sour ce,

3] Sring r ef er enceNane,
I

4| Mbdel Package sour ceParent,
I

5 EJBSessi onGonponent t ar get Par ent)
I {

6 | Qass target = null;

7| //if ruleis called for taggedVal ue collection... (add
I Tag)

8 | i f(referenceNane. equal s("taggedval ue")) {

9| target = Tag.cl ass;

10 | } else if (referenceNane. equal s("nanifestation")) {

11 | /1.

| ..elseif rueis called for nanifestation collection.

12 | target = Renot el nt erface. cl ass;

13 | } else if (referenceNane. equal s("feature")) {
14 | /l...elseruleis called for feature collection
15 | // Add Busi nessMet hod

16 | target = Busi nessMet hod. cl ass;

17 | }

18 | return target;

Using OptimalJ: Tutorials

1-271

OptimalJd 3.1

191}
2. Setting the names of the target objects is handled in later steps.

Step 13 - Define rule: EJBSessionComponent has a BusinessMethod
named stop()

This step looks similar to step 12, but requires a completely different
implementation! This is because getChildClasses() rules cannot map the
same source to two or more targets of the same type. For more
information on getChildClasses() rules, see getChildClasses() rules.

To map a second instance of BusinessMethod, you must use the context
stack to distinguish the second instance, st op() , from the first instance,
start (). For more information on the context stack, see Context stack.

Note: The code in this step modifies the rule defined in step 12.

1. InServiceToEJBPattern.java, update the method created in

step 12:

1| /** Domai nService naps to: Busi nessMethod, Busi nessMet hod,
| and Tag. */

2| public Qass get Chil dd asses(Donai nServi ce sour ce,
I

3] Sring r ef er enceNane,
I

4| Mbdel Package sour ceParent ,
I

5 EJBSessi onGonponent t ar get Par ent)
I {

6 | Qass target = null;

7| /] START NEWQTE

8 | [/if contextSack enpty, repeat this rule to create
| a 2nd Busi nessMet hod

9| i f(getSourceContext().isEwty()) {

10 | super DeepGopyChi | dWt hQont ext (source, "feature",
I

11| target Parent, sourceParent. nanespace());

12 | }

13 | /1 END NBeWQE

1-272

Tutorials

14 |

15 |
16 |
17 |
18 |

I

I
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |

OptimalJd 3.1

[/if ruleis called for taggedval ue collection... (add
Tag)
i f(referenceNane. equal s("taggedval ue")) {
target = Tag.cl ass;
} else if (referenceNane. equal s("nanifestation")) {
/1.

..elseif rueis caled for nanifestation collection.

target = Renot el nt erface. cl ass;
} elseif (referenceNane. equal s("feature”)) {
//...elseruleis called for feature collection
/1 Add two Busi nessMet hods
target = Busi nessMet hod. cl ass;

}

return target;

}

The rule now calls a super DeepCopyChi | dW t hCont ext ()
method to reapply the rule with an additional object in the context
stack. The call to super DeepCopyChi | dW t hCont ext () is
contained by an i f statement to prevent an infinite loop.

Setting the name of the BusinessMethod to st op() is handled in
another rule (see below).

This rule completes the first phase of the transformation - namely,
all rules that establish mappings from instances in the source
model to instances in the target model are complete. (Creating a
default EJBModule is an exception - because this is the most
complex part of the technology pattern, this task is covered in step
18 instead).

In the following steps you provide rules to set the properties of the

target model elements mapped by the rules defined in steps 7 to
13.

Step 14 - Define rule: DomainDataType maps to EJBDataType

This step declares that all references to DomainDataTypes should be
mapped to EJBDataTypes using a getReferenceClass() rule. You then
call another pattern to map the instances of these data types (for
instance, mapping the domain version of the String data type to the EJB
version of this data type).

Using OptimalJ: Tutorials

1-273

OptimalJd 3.1

1.

8 |
I
9|
I
10 |
I
11 |
12 |
2.

In Servi ceToEJBPat t er n. j ava, add the following method
directly after the getChildClasses() rules:

/1--
get Ref erenced ass() rul es

//-- These rul es handl e non-conposite ref erences.

/**

Donai nCat aType maps to a target EJBDataType. */

public Qass get Ref erenced ass(Donai nCat aType sour ce,
Sring r ef er enceNane,
Donai nH enent sour ceRef errer,

ApplicationH enent target Referrer)

{
return EJBDat aType. cl ass;

}
This getReferenceClass() rule establishes a mapping from
DomainDataType to EJBDataType; the mappings for instances of
these data types is established in the OptimalJd meta models.
To use these predefined mappings of data types, add the following
method to Ser vi ceToEJBPat t ern. j ava:

protected AlturaPatternSet get Dependent Forwar dPatt er ns()

{

AturaPatternSet resultSet = super. get Dependent Forwar dPat t er ns() ;
resul t Set.
add(get Mappi ngPat t er n(" donai nToF bMappi ng")) ;

return resul t Set;

1-274

Tutorials

OptimalJd 3.1

Note: To improve the readability of your code, you can add this method to
the Patt ern dependenci es section of the Java file, which is set aside
for methods dealing with relationships with other patterns. To find this
section, search your file for the string Patt ern dependenci es.

Step 15 - Define rule: Set BusinessMethod.name

In steps 12 and 13 you mapped two BusinessMethods, st art () and
st op() . However, the names of these methods are not defined by the
mapping rules. You need to define a further set of rules to set the
properties of the mapped elements. These rules are called
copyStructuralFeatures() rules.

1. InServiceToEJBPattern.java, add the following method
directly after the getReferenceClass() rule:

20 /--
| copySructural Features() rules
3| //-- These rules set property val ues on nmapped target nodel

| elenents.
A | m o m e
5|
6 | /**
| Set the nane of Busi nessMet hods napped from Domai nSer vi ce.
(I
7 | public void copySructural Feat ures(Donai nService source,
8 | Busi nessMet hod t ar get)
I {
9| Sring newNane = "start";
10 | Al turaMhppi ngBaselLi st anbul = target. get Tar get Myppi ng(pattern,
| fal se);
11| //Vé know that target is only napped by one pattern.
I
12 | A turaMppi ng am= (A turaMppi ng) (anbul .iterator().
| next());

Using OptimalJ: Tutorials

1-275

OptimalJd 3.1

13| java.util.@llection ¢ = amget Sour ceCont ext () ;
14 | if('c.isEmpty()) {

15 | newNane="st op";

16 | }

17 | target . set Name(newNane) ;

18] }

The rule only applies to BusinessMethods mapped from a
DomainService source - so it only affects the BusinessMethods
mapped as a result of steps 12 and 13. The rule sets the name to
st op if the if target is mapped to more than one source item
(which is the case when t ar get is mapped using

super DeepCopyW t hCont ext ()), otherwise the name is set to
start.

Step 16 - Define rule: Set Tag.name and Tag.value

In step 12 you mapped a Tag named Ser vi ceToEJB. However, the name
of the Tag is not defined by the mapping rule. In this step you define a
copyStructuralFeatures() rule to set the Tag name and the tag value.

1. In ServiceToEJBPattern. java, add the following method
directly after the getReferenceClass() rule:

1] /** Set the nane and val ue of Tags napped fromEnpty. */

2| public
| void copySructural Feat ures(Donai nServi ce sour ce,

3 Tag target)
I {

4| target. set Nane(" Servi ceToEIB') ;

5 target. set Val ue("true");

611}

The rule only applies to Tags mapped from a DomainService
source - so it only affects the Tags mapped as a result of step 12.

Step 17 - Define rule: Set ModelPackage.contentFilter

ServiceToEJB maps ModelPackage to ModelPackage (see step 7). You
must define another copyStructuralFeatures() rule to set the content
filter of the target model package to EJB.

1. InServiceToEJBPattern. java, add the following method
directly after the getReferenceClass() rule:

/** Set Mbdel Package. contentFH lter = G bQntentFH lter.

1-276 Tutorials

OptimalJd 3.1

*/
publ i ¢ voi d copyStruct ural Feat ur es(Mbdel Package sour ce,
Mbdel Package target)
{
target.set@ntentF | ter(CGontent H | t er Manager . get | nst ance() .
get (B bGontentF lter.class));

Step 18 - Define rule: Create a default EJBModule

Avalid EJB model requires that each EJB component should be attached
to an EJBModule. Generating this EJBModule is the most complex part
of this transformation, because:

the EJBModule should only be generated if EJBSessionComponents
are generated

Only one default EJBModule should be generated - regardless of the
structure of the source model

After generating the EJBModule, each EJBSessionComponent
should be attached to the module (if the component is not already a
member of another module)

1. Toensure that the default EJBModule is only generated when the
technology pattern has generated EJBSessionComponents,
modify the rule created in step 11, because this rule is applied
after an EJBSessionComponent is mapped:

1| //START NEWQXIE #1
2 | private bool ean defaul t Mdul eRul eAppl i edBef ore = fal se;
3| //B\D
| NEWQXE #1
4 | /** Donai nService nmaps to children of EIBSessi onConponent .

I
5| Wen at |east one EJBSessi onConponent is mapped, there

| shoul d be a

6 | default EIBMdul e.*/

7 | public dass getChildd asses(Epty sour ce,
I

8 | Sring r ef erenceNane,
I

9| Donai nSer vi ce sour ceParent ,

Using OptimalJ: Tutorials

1-277

OptimalJd 3.1

10 | EJBSessi onGonponent t ar get Par ent)
I {
11 | super DeepCopyChi | d(sour ceParent, "feature", targetParent);
12 | super DeepCopyChi | dWt hQont ext (sour cePar ent,
| "t aggedval ue",
13 | target Parent, sourceParent.refParent());
14 | super DeepCGopyChi | d(sour ceParent, "nani festati on", targetParent);
15 | //START
| NEWQXIE #2
16 | /lonly apply this napping once - additional calls are
| r edundant
17 | i f (def aul t Mbdul eRul eAppl i edBef ore = fal se) {
18 | def aul t Mbdul eRul eAppl i edBefore = true;
19 | super DeepCopyChi | d(get Root Sour ce(), "ownedH enent ",
I
20 | pattern. getTarget());
21 | }
22 | //B\D NEWQLE #2
23 | return null;
24| }

The code uses the pat t er n variable, which is available in all
incremental copiers, and is a reference to the pattern node which
represents the technology pattern in the target model. The
pattern node contains references to the topmost source and target
objects. For more information, see Pattern nodes.

The code adds a call to super DeepCopyChi | d() to map the
topmost package in the source model to children of the topmost
package in the target model.

This super DeepCopyChi | d() call would be made every time an
EJBSessionComponent is mapped, with the result that the same
set of mappings would be made repeatedly. This is not a problem
as the incremental copier disregards redundant mappings.
However, to prevent unnecessary processing, the call is hidden
inside ani f block to ensure that the call is only made once.

To map a default EJBModule, modify the rule for mapping
ModelPackages (defined in step 7):

1| /** Mbdel Package naps to a target Mbdel Package or EJBMbdul e.

[

1-278

Tutorials

2|
3

I
4|

I
5]

I
6 |
7|
8 |
9|
10 |
11 |
12 |
13 |
14 |
15 |

1]
2|
3]
4
5]

I
6|

I

OptimalJd 3.1

public Qass get Chil dd asses(Mdel Package sour ce,
Sring r ef er enceNane,

Mbdel Package sour ceParent,

Mbdel Package t ar get Parent)
{
/1 START NEWQXE
Qass target = null;
i f (source = get Root Source()) {
target = EJBMbdul e. cl ass;
} else {
target = Model Package. cl ass;
}
return target;
/1 BEND NEW QDE

}

The new code returns an EJBModule when the sour ce is the
topmost source model package.

Under default circumstances, this rule is not called for the
topmost source model package - transformation rules are only
applied to the children of this package. However, the call to
super DeepCopyChi | d() applies this rule to the topmost source
package, and maps it to an EJBModule attached as a child to the
topmost target model package.

To add EJBSessionComponents to the EJBModule, keep a
reference to the EJBModule (alternatively it would be possible,
but much more complicated, to obtain this module by navigating
the mapping objects). The easiest way to get a reference to the
EJBModule is to define a new rule:

private EIBVbdul e defaul t EJBMbdul € = nul | ;
/** ke an enpty rule to store a reference to the defaul t
EJBMbdul e for later use. */
publ ic A ass get Chi | dd asses(Epty sour ce,
Sring r ef er enceNane,

Mbdel Package sour ceParent,

Using OptimalJ: Tutorials

1-279

OptimalJd 3.1

7| EJBMbdul e target Parent)
I {

8 | def aul t EJBMbdul e = target Parent;

9| return nul | ;

10] }

Rules with an Empty source are called directly after
sour cePar ent is mapped to t ar get Par ent . In this case,
t ar get Par ent is a reference to the default EJBModule, and this
reference is stored in instance variable def aul t EJBMbdul e for
later use.

4. To add the EJBSessionComponents to the default EJBModule,
define a new copyStructuralFeatures() rule to set
EJBSessionComponent.module property:

1] /** Set EIBSessi onGnponent. nodul e = def aul t EJBMbdul e.
[
2| public void copySructural Feat ur es(Donai nServi ce

| source,

3| EJBSessi onGonponent
| target) {

4| if(target.getMdule() = null) {

5] target . set Mbdul e(def aul t EJB\bdUl €) ;

6 | }

[
You must test for whether EJBSessionComponent.module is
nul | , because the component could be attached to another, non-
default module!

Step 19 - Declare dependencies on other OptimalJ modules

ServiceToEJB uses model elements defined in the EJB and Service
models, as well as generic model elements such as Tag,
ApplicationElement, and DomainElement. This means that
ServiceToEJB depends on the OptimalJ modules that define these
elements. (This means that the pattern would not work in a version of
OptimalJ that does not provide a service model!)

You declare such dependencies in the pattern module's manifest file.

1. In the Explorer [Transformation Model], right-click
ServiceToEJBModule, and choose Edit Generated
Files>ServiceToEJBModule.mf from the pop-up menu.

1-280 Tutorials

OptimalJd 3.1

2. In Servi ceToEJBModul e. nf, edit the Openl DE- Modul e-
Modul e- Dependenci es line:

1| Qpenl D& Mbdul e- Mbdul e- Dependenci es: or g. openi de. debugger

| >10,
2| or g. openi de. conpi | er
| > 1.0,
3 or g. openi de. execut i on
| > 1.0,
4| org. openide.io >
I 1.0,
5 com conpuvar e. al turai nfra.
| nodul e,
6 | com conpuvar e. net beans.
| nodul es. nof Tool Base,
7| com conpuvar e. net beans.
| nodul es. nof Tool Gener at or,
8 | com conpuvar e. al t ur adev.
| cm net beans,
9| com conpuvar e. al t ur adev.
| servi ce,
10 | com conpuvar e. al t ur adev.
| €j b. net beans,
11| com conpuvar e. al t ur adev.

| dorai n. net beans,

Step 20 - Compile and install ServiceToEJB

Compile and install your technology pattern by compiling your code and
installing the pattern in OptimalJ.

1. Change to the Explorer [Code Model].

2. Select Mount Poi nt/ servi cet oej b/
Servi ceToEJBMbdul eTpMdul e and choose Pop-up
Menu>Execute. This compiles your pattern and installs it in
OptimalJ.

For more information, see Compiling a transformation pattern
and Testing a transformation pattern.

Using OptimalJ: Tutorials 1-281

OptimalJd 3.1

Step 21 - Test: Define a domain service model

To test your technology pattern you need a domain service model. Either
use an existing domain service model, or create a suitable test model.

Your test model should define at least one DomainService. In addition,
the model should contain a DomainServiceOperation which accepts at
least one DomainServiceParameter.

Step 22 - Test: Map the domain service package to the EJB
package

To test your technology pattern, you must apply the pattern to an EJB
model package.

1.

N o ok

In the Explorer [Application Model], right-click the application
ModelPackage, and choose New Child>ModelPackage from the
pop-up menu. This starts the Create a Model Package wizard.
Set the following properties:

Name - ser vi cet oej bt est
Content Filter-¢ej b

Click Next. This opens the Select source ModelPackages and
patterns wizard step.

Click Add to open the Select Source ModelPackage window.
Select the service package and click OK.

Select Servi ceToEJBPat t er nPat t er n from the drop-down list.
Click Finish.

Step 23 - Test: Apply the technology pattern

1.

In the Explorer [Application Model], right-click the node
application.servicetoejbtest.ServiceToEJBPatternPattern, and
choose Update Model from the pop-up menu.

Inspect the resulting EJB model.

Ensure that an EJBSessionComponent has been created for each
DomainService, and that the methods and tags specified by the
pattern are present on the components.

Verify the structure of your model.

In the Explorer [Application Model], right-click the node
application.servicetoejbtest, and choose Check Model from the
pop-up menu.

Re-apply the technology pattern.

1-282

Tutorials

OptimalJd 3.1

A technology pattern should have a reproducible effect. If you
regenerate a target model, it should only change when the source
model has changed, and should not change because the technology
pattern has been re-applied. Test this by regenerating your EJB
model: the EJB model should remain unchanged.

In this tutorial you have created a new technology pattern that creates a
simple EJB model containing several EJBSessionComponents with some
predefined methods and tags.

Further reading
Consider the following questions:

< How could you ensure that only certain DomainServices are mapped
to the EJB model? For example, you might prefer that ServiceToEJB
should ignore any DomainService that uses a DomainView (because
ServiceToEJB does not handle DomainViews).

= How can you prevent naming clashes? The domain service model
might define methods named start() or stop(). This would clash with
the names of the methods generated by ServiceToEJB.

= How could you add support for DomainViews to this technology
pattern?

For more information, see also Extending a technology pattern under
technology patterns.

1.27 Creating metamodels

You can add new model type to OptimalJ by creating a metamodel that
describes the new model type. A metamodel is a class model where each
class describes a model element type. A model conforms to the metamodel
if it contains only model elements that conform to the model element
types (and their constraints) defined in the metamodel.

Metamodels are defined using MOF, a modeling language developed by
the OMG for metamodeling. For more information on metamodels, see
Metamodeling.

Prerequisites
To complete this tutorial, you should understand:

Using OptimalJ: Tutorials

1-283

OptimalJd 3.1

< MDA and how OptimalJd implements MDA.

= The default model types provided with OptimalJ, such as the EJB and
Web models.

< How to define UML or MOF class models.
e Java.
= The repository API.

Duration
This tutorial takes approximately one hour to complete.

Objectives

In this tutorial you define a metamodel called the RangeModel, which is
a model for defining ranges of integer values. The range model has one
model element type, Range, which has three attributes, minimum,
maximum, and name. Range elements can restrict another Range, where
the Range is a subset of the restricting Range.

For example, you could model a marking system as a set of ranges:

= PercentageRange: 0 to 100
< Fail: 0 to 49

= Pass: 50 to 69

« Second-class pass: 70 to 79
= First-class pass: 80 to 100

= In this example, PercentageRange restricts all the other ranges, so
each pass or fail category must be a range of valid percentages.

= You can model this marking system as a test for your new metamodel.

There are two constraints that you will implement using a model
checker:

< Range.minimum must be less than Range.maximum for every
instance of Range.

« The minimum and maximum values for a Range must fall within the
bounds of any restricting Range.

Step 1 - Create a RangeModel metamodel
In this step you create a project and a RangeMbdel metamodel.

1. Create a new Architecture Edition project named
Met aModel i ngTut ori al .

1-284

Tutorials

OptimalJd 3.1

In the New OptimalJ Project wizard, mount the CM Metamodel
sources.

Note: In any architecture edition project, the metamodel sources must be
mounted.

2.

In the Explorer [Meta Model], right-click the Meta node. From the
pop-up menu, choose New Package. Name the new Package
RangeMbdel .

Click Finish.

The wizard creates a new metamodel for you.

Expand the RangeModel Package and view the default contents of
the model. For more information on these elements, see Defining
a metamodel.

Select the Tag org.omg.mof.idl_prefix. Set the values property to
com compuwar e. al t ur asanpl e. nodel s. This sets the location
of the code generated from this metamodel.

Step 2 - Create a metaclass nhamed Range

In this step you create the Range metaclass and its attributes.

For a more detailed description of creating metaclasses, see Creating
metaclasses.

1.
2.

3.

Right-click the Package RangeMbdel .

From the pop-up menu, choose New Child>Class. Name the new
Class Range.

Right-click Range. From the pop-up menu, choose New
Child>Attribute. Create an Attribute named m ni num
Right-click Range. From the pop-up menu, choose New
Child>Attribute. Create an Attribute named nmaxi num

Select the Attribute named m ni num Set the type property to
Foundati on. Dat a_Types. | nt eger.

You can also browse to this data type by selecting the type
property and clicking This opens the Type selection dialog box.
Select the Attribute named naxi mum Set the type property to
Foundati on. Dat a_Types. | nt eger.

Right-click the RangeModel Package. From the pop-up menu,
choose Check Model.

The model checker should report Model i s OKin the Output
Window [ModelChecker].

Using OptimalJ: Tutorials

1-285

OptimalJd 3.1

Step 3 - Create an Association named RestrictedRange
In this step you create the Rest ri ct edRange Association.

For a more detailed description of creating Associations, see Adding
associations between metaclasses.

1. Right-click the Package Rangehbdel .

2. From the pop-up menu, choose New Child>Association. Name
the new Association Restri ct edRange.

3. Right-click Restri ct edRange. From the pop-up menu, choose
New Child>AssociationEnd. Create an AssociationEnd named
restrictedBy.

= Set the type of therestri ct edBy to RangeMddel . Range.
= Set the multiplicity of restri ct edBy to zero or one.

4. Right-click Restri ct edRange. From the pop-up menu, choose
New Child>AssociationEnd. Create an AssociationEnd named
subRanges.

= Set the type of subRanges to RangeMbdel . Range.
= Set the multiplicity of subRanges to zero or nore,
unor der ed, nonuni que.

5. Examine the Class Range. Reference nodes corresponding to the
AssociationEnds have been added to Range.

6. Right-click the RangeMbdel Package. From the pop-up menu,
choose Check Model.
The model checker should report Model i s OKin the Output
Window [ModelChecker].

Step 4 - Define supertypes for the Range metaclass

In this step you define the supertypes for the Range metaclass. The
supertypes added in this step provide a name attribute, and enable
OptimalJ to display the instances of Range in the Explorer [Application
Model].

The superclasses used in this step are part of the OptimalFoundation
metamodel. For more information, see OptimalFoundation.

1. Select the Class Range.

2. Set the supertypes of the Range to
Opt i mal Foundati on. Al t ur aEl enent,
Opt i mal Foundati on. Al t uraTopE! enent .

3. Right-click the RangeMbdel Package. From the pop-up menu,
choose Check Model.

1-286

Tutorials

OptimalJd 3.1

The model checker should report Model is OKin the Output
Window [ModelChecker].

Step 5 - Add a constraint: MinimumLessThanMaximum

In this step you define the constraint that the minimum value for a
Range must be less than (or equal to) the maximum value.

For more information on defining class constraints, see Constraining
Classes.

1. Right-click the Class Range.

2. From the pop-up menu, choose New Child>Constraint.

3. Create a Constraint named M ni nunLessThanMaxi num

= Set the constrainedElements property to RangeModel . Range.
= Set the language property to Java.
= Set the expression property to:

return (el ement.getM ninmun() >
el ement . get Maxi nun()) ;

Note: The expression must be a boolean expression returning t r ue when
there is an error condition. You can refer to instances of the constrained
element using the variable el enent .

4. Right-click the RangeModel Package. From the pop-up menu,
select Check Model.

The model checker should report Model i s OKin the Output
Window [ModelChecker].

Step 6 - Add a constraint: RangelsRestricted

In this step you define a constraint that the bounds of a Range must lie
within the bounds of a restricting Range.

For more information on defining class constraints, see Constraining
Classes.

1. Right-click the Class Range.
2. From the pop-up menu, choose New Child>Constraint.
3. Create a Constraint named Rangel sRestri ct ed.
Set the constrainedElements property to RangeMbdel . Range.
Set the language property to Java.
Set the expression property to the following:
1| Range restrictingRange = el enent. get RestrictedBy();

Using OptimalJ: Tutorials

1-287

OptimalJd 3.1

2|
3
4|
5]

I
6 |
7|
8 |

I
9 |
10 |
11 |
12 |

bool ean errorCondition = fal se;

if (restrictingRange != null) {
/el enent bounds nust lie wthin restrictingRange bounds.
if(elerment.getMninunf) < restricti ngRange. get M ni nung)

)

errorCndition = true;

}
i f(el ement.get Mixi nunf) > restricti ngRange. get Maxi mung)

) {

errorGndition = true;

}

return errorGndition;

Note: You can refer to instances of the constrained element using the

variab

le el enent . The expression must be a boolean expression returning

t r ue when there is an error condition.

4.

Right-click the RangeModel Package. From the pop-up menu,
choose Check Model.

The model checker should report Model is OKin the Output
Window [ModelChecker].

Right-click the RangeModel Package. From the pop-up menu,
choose Generate Code.

After code generation is complete, right-click RangeMbdel . From
the pop-up menu, choose Edit Generated
Files>RangeModelModelChecker.java.

Examine the code generated for your class constraints.

Step 7 - Deploy and test the model type

Deploy and test your new model type, including testing the class
constraints by executing the model checker.

Test your metamodel by creating a range model called mar ki ngsyst em

1.

Install the RangeModel model type in OptimalJ, so that you can
create instances of this model type in the Explorer [Application
Model]. For instructions on installing a metamodel, see Deploying
a metamodel.

1-288

Tutorials

OptimalJd 3.1

2. In the Explorer [Application Model], create a new root
ModelPackage named t est . Use the Three Tier Application
Structure.

3. Select the appl i cat i on ModelPackage. From the popup menu,
choose New Child>ModelPackage.

= Set name to mar ki ngsyst em
= Set contentFilter to r ange_nodel .

4. Create the following Range elements:

= PercentageRange: 0 to 100

= Fail: 0 to 49 (restricted by PercentageRange)

« Pass: 50 to 69 (restricted by PercentageRange)

= Second-class pass: 70 to 79 (restricted by PercentageRange)
= First-class pass: 80 to 100 (restricted by PercentageRange)

5. The model specified above is valid, so you can test your model
checker.
Select the mar ki ngsyst emmodel package. From the pop-up
menu, choose Check Model.
The model checker should report Model i s OKin the Output
Window [ModelChecker].

6. Test your model checker by violating the
M ni murmLessThanMaxi numconstraint. Set the minimum value
for Fail to 65.
Select the mar ki ngsyst emmodel package. From the pop-up
menu, choose Check Model.
The model checker should report an error in the Output Window
[ModelChecker].

7. Test your model checker by violating the Rangel sRestri ct ed
constraint. Set the minimum value for Fail to -10.
Select the mar ki ngsyst emmodel package. From the pop-up
menu, choose Check Model.
The model checker should report an error in the Output Window
[ModelChecker].

In this tutorial you created a new metamodel, installed this model type
in OptimalJ, and created a model conforming to the new model type.
While the metamodel is relatively simple, it demonstrates how to define
new metaclasses, attributes, associations, and model checkers.

Using OptimalJ: Tutorials 1-289

OptimalJd 3.1

Further reading

For more information, see also Metamodeling and Transformation
patterns.

= Managing metamodel versions

= Behavioral features in metamodels

= Class constraints

e StructuralFeature constraints

= Persistence of associations

= Reference specialization

= Transformation patterns and metamodels

1.28 Changing the default OptimalJ metamodels

This tutorial shows you how to change the default model types of
OptimalJ by editing the metamodels that describe the model type.

For more information on metamodels, see Metamodeling.

Prerequisites
To complete this tutorial, you should understand:

< MDA and how OptimalJd implements MDA.

= The default model types provided with OptimalJ, such as the EJB and
Web models.

< How to define UML or MOF class models.
e Java.
= The repository API.

Note: This tutorial does not cover metamodeling in detail, as it focuses on
the procedure for installing updated versions of the default metamodels.
For a general tutorial on metamodeling, see Creating metamodels.

Duration
This tutorial takes approximately one hour to complete.

1-290

Tutorials

OptimalJd 3.1

Objectives

In this tutorial you update the EJB metamodel, adding the following
features to the model:

« Add a boolean attribute | og to the Class EJBConponent .

Step 1 - Create a new project
In this step you create a new Architecture Edition project.
1. Create a new Architecture Edition project:
1. Startthe New OptimalJ Project wizard by choosing Project>New
OptimalJ Project.

2. Name the project EJBMet aMbdel i ngTut ori al . Click Next.

3. Select Experiment with One or More Example Models. Click
Next.

4. Select CRM Examples (Sample Domain Model), and click
Next.

5. Select OptimalJd Metamodel Sources, and click Finish.

Note: In any architecture edition project, the metamodel sources must be
mounted.

Step 2 - Update the EJB metamodel

In this step you add a new attribute to the EJBComponent metaclass,
which is part of the EJB metamodel.

For a more detailed description of creating metaclasses, see Creating
metaclasses.

1. In the Explorer [Meta Model], expand the Package EJB.
2. Search for the metaclass EJBConponent .

Tip: EJBConponent is one of the first items in the EJB model, if you have
not modified the sorting properties for OptimalJ. If you cannot find
EJBConponent , right-click on the EJB package, and select Sort
Children>By Name from the pop-up menu.

3. Right-click EJBConponent . From the pop-up menu, choose New
Child>Attribute. Create an Attribute named | og.

Using OptimalJ: Tutorials

1-291

OptimalJd 3.1

4,

Select the Attribute named | og. Set the type property to
Foundati on. Dat a_Types. Bool ean.

You can also browse to this data type by selecting the type
property and clicking This opens the Type selection dialog box.
Right-click the EJB Package. From the pop-up menu, select
Check Model.

The model checker should report Model is OKin the Output
Window [ModelChecker].

Step 3 - Create a patch JAR file

The update made in step 2 to the metamodel must be applied to OptimalJ
to have any effect. The modified class files are applied to OptimalJ using
OptimalJ's patching mechanism.

In this step you create a patch JAR file.

1.
2.
3.

Right-click the root Package EJB.

From the pop-up menu, choose Generate Code.

In the Explorer [Code Model], expand the directory

Opt i mal JUser Di rect ory/ met anodel / conmf conpuwar e/

al t ur adev/ nodel s. This contains the files generated from the
EJB metamodel.

Explore the directory

com compuwar e. al t ur adev. nodel s. eJB to view the code
generated from the EJBComponent metaclass.

Right-click the directory Opt i mal JUser Di r ect ory/

net anmodel / com From the pop-up menu, choose New=>All
Templates. This opens the New Wizard.

In the New Wizard, select the template JAR Archives/JAR Recipe.
Click Next.

In the Basic Recipe Properties window, set Recipe Name to

ej bPat ch.

Note the Generated JAR Location setting. This is where the
patch JAR file is generated.

Click Next. This opens the Specify JAR Recipe Contents window.
In the Specify JAR Recipe Contents window, specify the following
contents for the JAR recipe:

Opt i mal JUser Di rect ory/ met anodel / conf conpuwar e/
al t ur adev/ nodel s/ | npl eJB

1-292

Tutorials

OptimalJd 3.1

e Optimal JUserDirectory/ netanodel / com conpuwar e/
al turadev/ nodel s/ eJB/ col | ecti ons

e Optimal JUser Directory/ net anodel / com conpuwar e/
al t ur adev/ nodel s/ eJB/ *. j ava

Click Next.
9. Click Finish.
10. Compile your code and build the patch JAR file:

1. Compiling the EJB metamodel can take over an hour on some
systems.
To improve the performance of the Java compiler, allocate more
memory to it. For more information, see Code generation and
customization.

2. Right-click ej bPat ch. j ar Cont ent and choose Compile from
the pop-up menu.

Step 7 - Deploy the patch JAR file
In this step you add the patch JAR file to OptimalJ.

1. Exit OptimalJ.

2. Inyour operating system, go to the directory containing the patch
JAR file, ej bPat ch. j ar. Copy this file to the clipboard.

3. Go to the following directory:
Optimal JI nstal |l ati onDi rectory/ nodul es/ pat ches/

4. Create a subfolder named:
Optimal JInstal |l ati onDi rectory/ nodul es/ pat ches/ com
conpuwar e- al t ur adev- ej b- net beans
This subfolder is named after the module identifier of the EJB
Component Module (ej bCorrponent Modul e. j ar). OptimalJ
loads classes from this location in preference to the classes
contained in ej bConponent Modul e. j ar.

Note: The next step affects all EJB models loaded in your current
Optimald project. Do not proceed if your project contains EJB models,
because the next step changes the structure of the XCM files used to store
EJB model data.

5. Paste the patch JAR file into this folder.
6. Restart OptimalJd.

Using OptimalJ: Tutorials 1-293

OptimalJd 3.1

7. Test your work by creating a small EJB model: select
Model>Update All Models to generate an EJB model for the
CRM sample.

8. Inspect an EJBEntityComponent. The component has a new
property log, which accepts the valuestrue and f al se.

In this tutorial you have altered the default EJB model type by adding a
new attribute to all types of EJB component, such as
EJBEnNtityComponents and EJBSessionComponents.

Further reading

The alterations to the EJB metamodel enable you to edit models that use
the new attribute. However, the transformation patterns provided by
OptimalJ do not use this attribute, so you must write new patterns or
extend the existing patterns to take advantage of the changes to the
metamodel. For more information, see Technology patterns and
Implementation patterns.

When you change a metamodel, you must ensure that your changes do
not break existing OptimalJ code. For example, the technology patterns
provided by OptimalJ set the values of attributes in EJB models. If you
remove an attribute from the metamodel, then the set method called by
the technology pattern is not available in the updated API. For more
information on the guidelines you should follow, see Guidelines for
changing the default metamodels.

For more information on the elements and properties provided by the
default OptimalJ metamodels, see Reference.

1.29 Installing a local CVS server

To run the CVS tutorials in OptimalJ, you need to interact with a
running CVS server. If your CVS administrator has created a test
repository, you can use this repository to run the CVS tutorials. As an
alternative, you can install a freeware CVS server, CVSNT, on their
systems and set up a local repository. This tutorial describes how to
install CVSNT on a Windows system. Linux users can install the UNIX/
Linux version CVSNT if they wish.

The CVSNT home page is located at http://www.cvsnt.org/wiki/.

1-294

Tutorials

OptimalJd 3.1

Prerequisites

This tutorial assumes that the reader is comfortable with installing
and configuring software packages on their system.

Windows NT, 2000, and XP users will need administrator rights on
their local machine in order to complete this tutorial.

Duration
This tutorial takes approximately 30 minutes to complete.

Objectives

In this tutorial, you learn how to:

Download and install CVSNT.

Create a CVSNT repository.

Add users for your CVSNT repository.

Configure your repository for use with OptimalJ projects.

Step 1 - Download and install CVSNT

Download the CVSNT installer and execute it on your local machine. The
CVSNT home page is located at http://www.cvsnt.org/wiki/. The
detailed steps include a few important hints for running the installer.

1. Using a web browser, browse to http://www.cvsnt.org/wiki/ and
download CVSNT version 2.1.1.

2. Runthecvsnt-2.1. 1. exe you just downloaded and follow the
steps in the CVSNT setup wizard.
On the Select components panel, select the Typi cal
installation.

3. When the installation is complete, reboot your system and
continue with the tutorial.

Step 2 - Create a CVS repository

Start the CVSNT control panel and create a repository for your OptimalJ
projects.

1. From the Windows task bar, choose Start>Settings>Control
Panel. Open the CVSNT control panel.

Using OptimalJ: Tutorials

1-295

OptimalJd 3.1

Figure 1-129 CVSNT control panel - Service Status

2. Stop the CVS Service and the CVS Lock Service by clicking the
Stop button for each service. Wait for the control panel to indicate
that the services have stopped.

3. Click the Repositories tab.

1-296 Tutorials

OptimalJd 3.1

Figure 1-130 CVSNT control panel - Repositories

4. Specify the root directory for all of your CVS repositories. Select
the Repository Prefix checkbox and click the ellipsis button to
select the root folder for your repository. Select the C. \ drive and
click New Folder to create the C. \ CVSReposi t ory folder.

Using OptimalJ: Tutorials 1-297

OptimalJd 3.1

Figure 1-131 Selecting a prefix folder

Select the new C. \ CVSReposi t ory folder and click OK.
5. Add a repository for OptimalJ projects. Click Add. Enter a path of
C. / CVSReposi t ory/ QJProj ect s and click OK.

Note: CVSNT prefers forward slashes (/) for directory delimiters, even on
Windows systems.

Figure 1-132 Creating an OJProjects root

CVSNT prompts for you to create the new directory. Click Yes.
The new repository appears in the list of valid roots.
6. Set the configuration options for CVSNT. Click the Advanced tab.

1-298

Tutorials

OptimalJd 3.1

Figure 1-133 CVSNT control panel - Advanced settings

Configure CVSNT as shown in the figure. The Temporary
Directory must not be located in the Windows directory (for
example, C: \ W NNT) or anywhere in the C. \ Docunents and
Set ti ngs directory. These directories have user permissions that
can interfere with CVSNT.

7. Click Apply.

8. Click the Service Status tab. Start the CVS Service and the CVS
Lock Service by clicking the Start button for each service. Wait for
the control panel to indicate that the services are running.

9. Click OK to close the CVSNT control panel.

Using OptimalJ: Tutorials 1-299

OptimalJd 3.1

Step 3 - Add users for your repository

Your repository will require at least one user account so you can log in
and interact with the repository. You will create two user accounts on
this local computer so you can simulate OptimalJ development in a team
environment.

1. On the Windows desktop, right-click the My Computer icon and
choose Manage. Your system display the Computer Management
window

2. In the Tree pane, browse to Computer Management
(Local)>System Tools>Local Users and Groups>Users.

Figure 1-134 Computer Management - Users

3. Add an account for an OptimalJ architect. Right click in the users
list and choose New User. Edit your New User settings as shown
in the following figure. In the Password fields, enter opti nal j .

1-300 Tutorials

OptimalJd 3.1

Figure 1-135 Settings for OptimalJ architect account

4. Click Create to save you changes. The New User dialog box clears
in preparation for adding another account.

5. Add an account for an OptimalJ architect. Edit your New User
settings as shown in the following figure. In the Password fields,
enteroptimal j .

Using OptimalJ: Tutorials 1-301

OptimalJd 3.1

Figure 1-136 Settings for OptimalJ developer account

6. Click Create to save you changes. The New User dialog box clears
in preparation for adding another account. Click Close to close the
New User dialog box. The new accounts appear in the user list.

Note: The selected account names and settings used here are designed to
accommodate the OptimalJ CVS tutorials and have no bearing on the
roles of OptimalJ architects or developers. Your CVS administrator will
set up the user accounts in your production environment.

1-302 Tutorials

OptimalJd 3.1

Figure 1-137 Computer Management®sers

7. Close the Computer Management window.

Step 4 - Configure your repository for OptimalJ

Your CVS repository will need to be configured to handle the specific file
types used in OptimalJ projects. Normally, the CVS administrator would
check out and edit the repository configuration files because the
configuration files in the repository are usually restricted to
administrators only. Since we are configuring a test repository purely for
demonstration purposes, we will perform the changes ourselves and
manually edit the configuration files in the

C. \ CVSReposi t or y\ QJPr oj ect s directory.

In a production environment, your CVS administrator would handle this
configuration for you, because the configuration files in the repository are
usually restricted to administrators only. CVS administrators should see
Configuring a CVS repository for OptimalJ for more information.

1. In Windows Explorer, open the
C:\ CVSReposi t or y\ QJPr oj ect s\ CVSROOT directory.

Using OptimalJ: Tutorials

1-303

OptimalJd 3.1

2. Select the cvswr apper s file. This file tells CVS which file
extensions apply to binary files. Open the properties for the file,
clear the Read Only checkbox, an click OK.

3. Useatexteditor, such as WordPad, to add the following text to the
end of the cvswr apper s file.

1| *.bnp -k 'b'
2] *.gf -k'b
3| *.ear -k 'b'
4] *.idx -k 'b
5| *.jar -k 'b'
6| *.jpeg -k 'b'
71 *jpg-k'b
8| *.mer -k 'b'
9| *.png -k 'b'
10| *.var -k 'b'

11| *.vbnp -k 'b'
12 | *.xenon -k 'b'
13| *.zip-k'b

Note: Your text editing program may try to append a . t xt extension to
the cvswr apper s filename. If this happens, manually remove the
extension in Windows Explorer.

4. Select the cvswr apper s file. Open the properties for the file,
select the Read Only checkbox, an click OK.

5. Use a text editor, such as WordPad, to create a new file named
cvsi gnor e in the C. \ CVSReposi t or y\ QJIPr oj ect s\ CVSROOT
directory. The cvsi gnor e file should contain the following text.

1] .nbattrs
2| .nbattrs*
3| L

4| *.class

5| *.class*

6| *.dar
7| *.ear
8 | *.eardef
9| *.jar
10 | *.ner

1-304 Tutorials

OptimalJd 3.1

11| *.tpl
12 | *.war
13 | *.xenon
14| *.zip

Note: Your text editing program may try to append a .t xt extension to
the cvswr apper s filename. If this happens, manually remove the
extension in Windows Explorer.

6. Select the cvsi gnor e file. Open the properties for the file, select
the Read Only checkbox, an click OK.

You successfully installed CVSNT, created a repository for OptimalJ
projects, and configured that repository to properly handle OptimalJ
projects. You added two user accounts for accessing the repository.

Your repository is now ready to import and manage OptimalJ projects.
The Working with OptimalJ projects in CVS will show how you can
manage OptimalJ projects with CVS.

Further reading

For more information, see the documentation under Using version
control in OptimalJ.

The full documentation for CVSNT is located at http://www.cvsnt.org/
wiki/.

1.30 Working with OptimalJ projects in CVS

In this tutorial, you import a project into a CVS repository. You will then
simulate the activities of two OptimalJ users, each one checking out and
editing the same project in the CVS repository. One user is the OptimalJ
architect who will model the application and generate the code for the
development team. The second user is a OptimalJ developer who is
editing the generated code provided by the architect.

Using OptimalJ: Tutorials

1-305

OptimalJd 3.1

Prerequisites

= You should have already created a project in OptimalJd. The CVS
tutorials are based on the sample CRM project that is included with
OptimalJd. You can quickly generate this project by following the
Importing a domain class model tutorial.
Before you import, you should perform the following tasks on your
application:
« Update all models.
= Generate all code.
= Optionally, compile and test your project.

= You should have already perform the steps in the Installing a local
CVS server tutorial.

= You should be comfortable with editing files in the Explorer [Code
Model] and editing DomainAttributes.

Duration
This tutorial takes approximately two hours to complete.

Objectives

This tutorial will provide a view of typical editing workflow when using
a CVS repository to store an OptimalJ project.

Step 1 - Prepare the file system
In your file system, create the following directories:

e C:\ CVSQIAr ch?this directory will contain the local work area for
the OptimalJ architect.

= C:\ CvSQIDev?this directory will contain the local work area for the
OptimalJ developer.

Step 2 - The architect imports the OptimalJ project into CVS

You are an OptimalJ architect and you have just finished the modeling
and code generation work on your application. It is time to import the
application into the CVS repository and make it available to the rest of
the development team. Your application consists of multiple directories.
Each directory will need to be imported into the CVS repository
separately.

1-306

Tutorials

OptimalJd 3.1

1. In OptimalJd, choose Tools>Import module to CVS. The Import
Cvs Wizard appears.

2. Selectthe C:\ Opti mal J\ um | npor t\ um Model directory and
click Next.

3. Enter the connection method and settings for importing the
selected directory.

Figure 1-138 Import Cvs Wizard€onnection settings

Enter the following values:

e Server Name?IP address or DNS name of the server. This value
will be provided by your CVS administrator. For this tutorial,
enter | ocal host.

e Port?Communications port for your CVS server. This value will
be provided by your CVS administrator. For this tutorial, enter
2400.

= User Name?Your user name on the CVS Server. Your CVS
administrator creates this user name for you. We are currently
playing the part of the OptimalJ architect, so enter oj ar chi t ect .

Using OptimalJ: Tutorials 1-307

OptimalJd 3.1

Repository?Path to your repository on the CVS server. This
value will be provided by your CVS administrator and must start
with a front slash (/). For this tutorial, enter / QJPr oj ect s.
CVSROOT=?A read-only field that displays the equivalent CVS
command that results from your current settings.

When you have entered your settings, click Next.

4. Provide the password for your user name.

Figure 1-139 Import Cvs Wizard€lient login

Enter the password for your account on the CVS server. For this
tutorial, enter opt i mal j and click Login. The CVS server
responds with "Login successful”. Click Next.

Leave the import options set to their default values. The Module
Name field contains the name of the module that will be created
in the CVS repository. You will need the module name later when
you checkout your project.

1-308

Tutorials

OptimalJd 3.1

Figure 1-140 Import Cvs Wizardinport options

Click Finish.

The output from the CVS server appears in the Output tab of the
Output Window. When the import is complete, the status bar
displays Cvs Import finished successfully.

. Repeat the import process for the

C:\Optinal J\um I npor t\ um Ej bCode directory.

. Choose Tools>Import module to CVS.
. Selectthe C:\ Opti mal J\ um | nport\ unm Ej bCode directory and

click Next.
Enter the same connection settings you used earlier in this step.

Click Next.

Enter your opt i mal j password and click Login. Click Next.

. Click Finish.

. Repeat the import process for the

C:\Optinal J\um I npor t\ um WebCode directory.

Using OptimalJ: Tutorials

1-309

OptimalJd 3.1

4,
5.

Choose Tools>Import module to CVS.

Selectthe C: \ Opt i mal J\ um | mpor t \ un WebCode directory and
click Next.

Enter the same connection settings you used earlier in this step.
Click Next.

Enter your opt i mal j password and click Login. Click Next.
Click Finish.

All the models, EJB code and Web code for the um | nport application
are now available in the CVS repository. To edit this project, you must
check the application directories out and mount them in your working
directory.

Step 3 - Developer checks out application from CVS

You are now playing the role of an OptimalJ developer. Your OptimalJ
architect has made a new application available in the CVS repository and
you want to edit the application. First you will need to check the
application out from the CVS repository.

1.

2.
3.

In OptimalJ, choose Tools>Checkout module from CVS. The
Checkout Wizard appears.

Select the C. \ CvSQIDev directory and click Next.

Enter the connection method and settings for performing the
checkout.

1-310

Tutorials

OptimalJd 3.1

Figure 1-141 Checkout Wizard€onnection settings

Enter the following values:
< Server Name? | ocal host.
< Port? 2400.
< User Name? oj devel oper.
< Repository? / QJProj ects.

When you have entered your settings, click Next.
4. Provide the password for your user name.

Using OptimalJ: Tutorials 1-311

OptimalJd 3.1

Figure 1-142 Checkout Wizard€lient login

Enter the password for your account on the CVS server. For this
tutorial, enter opt i mal j and click Login. The CVS server
responds with "Login successful”. Click Next.

5. Specify the modules that you would like to check out.

1-312 Tutorials

OptimalJd 3.1

Figure 1-143 Checkout Wizard3elect modules

Inthe Additional Modules for Checkout field, enter uni Model
um Ej bCode um WebCode. This will checkout all three of the
modules for the un | nport application. Click Next.

6. Click Finish.

7. The output from the CVS server appears in the Output tab of the
Output Window. When the checkout is complete, the status bar
displays Cvs Checkout finished successfully.

You have checked out a copy of the urm | nport project into your working
directory. You can now create a project and mount the checked out
directories.

Step 4 - Architect checks out application from CVS

You are back to playing the role of the OptimalJ architect. You previously
imported the application and now you need to check the application out
from the CVS repository to make some changes.

This procedure is similar to the procedure in Step 3 - Developer checks
out application from CVS.

Using OptimalJ: Tutorials 1-313

OptimalJd 3.1

1. In Optimald, choose Tools>Checkout module from CVS.
2. Select the C:\ CVSQJAr ch directory and click Next.
3. Enter the following values:

e Server Name? | ocal host.
< Port? 2400.

< User Name? oj architect.
< Repository? / QJProj ect s.

When you have entered your settings, click Next.

4. Enter a password of opti mal j and click Login. The CVS server
responds with "Login successful”. Click Next.

5. Inthe Additional Modules for Checkout field, enter um Model
um Ej bCode um WebCode. This will checkout all three of the
modules for the un | nport application. Click Next.

6. Click Finish.

7. The output from the CVS server appears in the Output tab of the
Output Window. When the checkout is complete, the status bar
displays Cvs Checkout finished successfully.

Step 5 - Developer mounts project for editing

As the OptimalJ developer, you want to open the project you just checked
out. You will need to create a project and mount the application
directories.

1. Choose Project>Project Manager. Click New, enter a new
project name of CVSDev and click OK. The new CVSDev project
opens.

2. In the Explorer [Code Model], select the Code Model node. Right-
click and choose Mount>Version Control>CVS. The New
Wizard?CVS appears.

3. Click the Browse button and select the C: \ CvSQJDev\ um Model
directory and click Open. Click next.

4. OptimalJd knows that you checked out the selected directory, so it
prompts you, specifically, for your CVS password.

1-314

Tutorials

OptimalJd 3.1

Figure 1-144 New Wizard - CVS€lient login

Enter opti mal j and click Login. The CVS server responds with
"Login successful".
Click Finish.
OptimalJ loads the model repository for your project.

5. Repeat the mount process for the C: \ CVSQJDev\ um Ej bCode
directory.

1. Right-click the Code Model node and choose Mount>Version
Control>CVS.

2. Select the C: \ CvsQJDev\ unm Ej bCode directory. Click next.

3. Enter a password of opti mal j and click Login. Click Finish.

4. Repeat the mount process for the C: \ CVSQJDev\ um WebCode
directory.

1. Right-click the Code Model node and choose Mount>Version
Control>CVS.

Using OptimalJ: Tutorials 1-315

OptimalJd 3.1

2. Select the C: \ CvSQJDev\ unm WebCode directory. Click next.
3. Enter a password of opti mal j and click Login. Click Finish.

Step 6 - Developer adds web module jar file

Since most project jar files (for example, ej b. j ar) are derived from the
source code, they are not included in the CVS repository. However, the
al turalibDepl oyWeb. j ar is required by your application at compile
time and deploy time. Since your project was checked out from a CVS
repository that, by rule, does not contain . j ar files, you will need to
manually restore this file to your application.

1. In the Explorer [Code Model], select the Code Model node. Right-
click and choose Mount>Archive Files. The New Wizard?
Archive Files appears.

2. Selectthe Opti mal JI nstal | \ nodul es\ ext\webl i b. zi p file
and click Finish. The contents of webl i b. zi p are mounted in the
Explorer [Code Model].

3. In the Explorer [Code Model], right-click webl i b. zi p\ VEB-

I NF\Ii b\al turalibDepl oyWb. jar and choose Copy.

4. Right-click the C: \ CVSQJDev\ um WebCode\ VEB- I NF\ | i b

folder and choose Paste>Copy.

Figure 1-145 alturalibDeployWeb.jar added to your project

You can already see how the interface for a CVS file system
different. Each filename in the Explorer [Code Model] is appended

1-316 Tutorials

OptimalJd 3.1

with the file's CVS status and version number. Files that you've
just checked out from the repository are up-to-date. The

al tural i bDepl oyWeb. j ar exists in your working directory, but
not on the CVS repository, so it has a status of Local.
Right-click the webl i b. zi p node and choose Unmount
Filesystem.

Before you proceed to edit the project, it is wise to compile the
project to make sure all the necessary components are checked
out. Choose Project>Compile Project. OptimalJ displays the
message of Finished Project CVSDev when compilation is
complete.

Step 7 - Architect mounts project for editing

The OptimalJ also needs to mount their checked out project for editing.
You will need to create a project and mount the application directories for
the architect.

This procedure is similar to the one in Step 5 - Developer mounts project
for editing.

1.

2.

=

A~ Wb

A~ Wb

wn

Choose Project>Project Manager. Click New, enter a new
project name of CVSAr ch and click OK.

In the Explorer [Code Model], select the Code Model node. Right-
click and choose Mount>Version Control>CVS. The New
Wizard?CVS appears.

Mount the C: \ CVSQJAr ch\ um Model directory.

Right-click the Code Model node and choose Mount>Version
Control>CVS.

Select the C. \ CVSQJAr ch\ um Model directory. Click next.
Enter a password of opti mal j and click Login. Click Finish.

Mount the C: \ CVSQJAr ch\ um Ej bCode directory.
Right-click the Code Model node and choose Mount>Version
Control>CVS.

Select the C: \ CVSQJAr ch\ unl Ej bCode directory. Click next.
Enter a password of opti mal j and click Login. Click Finish.

Mount the C: \ CVSQJDev\ un WebCode directory.

Right-click the Code Model node and choose Mount>Version
Control>CVS.

Select the C. \ CvSQIDev\ um WebCode directory. Click next.
Enter a password of opti mal j and click Login. Click Finish.

Using OptimalJ: Tutorials

1-317

OptimalJd 3.1

Step 8 - Architect adds web module jar file

The architect will need to add the al t ur al i bDepl oyWeb. j ar just like
the developer did in Step 6 - Developer adds web module jar file.

1.

In the Explorer [Code Model], select the Code Model node. Right-
click and choose Mount>Archive Files. The New Wizard?
Archive Files appears.

Select the Opti mal JI nst al | \ nodul es\ ext\webl i b. zi p file
and click Finish. The contents of webl i b. zi p are mounted in the
Explorer [Code Model].

In the Explorer [Code Model], right-click webl i b. zi p\ V\EB-
INF\Ii b\al turalibDepl oyWb. jar and choose Copy.
Right-click the C: \ CVSQJDev\ um WebCode\ VEB- | NF\ | i b
folder and choose Paste>Copy.

Right-click the webl i b. zi p node and choose Unmount
Filesystem.

Choose Project>Compile Project to perform a test compile on
the project. OptimalJ displays the message of Finished Project
CVSDev when compilation is complete.

You can now simulate the actions of the architect and developer editing
the same project. Open the CVSArch project to play the role of the
architect. Open the CVSDev project to play the role of the developer.

Step 8 - Developer edits the CustomerMaintBrowse.jsp

As an OptimalJ developer, you want to add a birthday property to the
project's Cust orrer Mai nt Br owse. j sp file.

1.

<%-

Take the role of the developer. Choose Project>Project
Manager. Click the CVSDev project and click Open. The CVSDev
project opens.

In the Explorer [Code Model], open the unm WebCode folder.
Double-click the Cust oner Mai nt Br owse. j sp file to edititin the
Source Editor.

Locate the free block that starts with the line:
<% - add your own properties here --%
Edit this free block so it looks like the following:

add your own properties here --%

property: birthday

5.

Close this file and save your changes.

1-318

Tutorials

OptimalJd 3.1

6. In the Explorer [Code Model], the status of\
Cust omrer Mai nt Browse. j sp has changed from Up-to-date to
LMod, indicating that the file has been modified locally.

Figure 1-146 Locally modified file

To make this change available to the rest of the development
team, right-click the Cust oner Mai nt Br owse. j sp and choose
CVS>Commit.

7. OptimalJ displays a dialog box about advanced CVS options.
Select the Do Not Show This Dialog Box Again checkbox and click
Commit. The Arguments for Commit Command dialog box
appears.

Using OptimalJ: Tutorials 1-319

OptimalJd 3.1

Figure 1-147

Enter a Log Message of Added bi rt hday property and click
OK.

8. The Output of CVS Commands [Update] window appears. The
entry in this window indicates that the changes in this file have
been incorporated into the CVS repository. The version of the
Cust oner Mai nt Browse. j sp file has changed from 1.1.1.1 to 1.2.

1-320 Tutorials

OptimalJd 3.1

Figure 1-148 Commit results for CustomerMaintBrowse.jsp

Click Close to dismiss the Output of CVS Commands [Update]
window.

Step 9 - Architect adds class attribute

The architect has decided that the Customer domain class needs an
additional attribute to store the middle initial of the customer. They will
edit the domain class, update models, and generate code. This change
will affect several files.

1. Take the role of the architect. Choose Project>Project
Manager. Click the CVSAr ch project and click Open. The
CVSArch project opens.

Using OptimalJ: Tutorials

1-321

OptimalJd 3.1

In the Explorer [Domain Model], browse to

nmycr m domai n. cl ass. cust oner.

Right-click the Customer domain class and choose New
Child>DomainAttribute. Add a ni ddl el ni t attribute of type
Stri ng and click Finish.

This change requires that you update all models. Choose
Model>Update All Models. Select the mycr mnode and click
Finish. Wait for the model update to complete.

Generate all code. Choose Model>Generate All Code.

Note: The first time you generate code after you check out a project, you
need to re-establish your project's EJB code and Web code folders.

6.

7.

10.

When prompted define code directories, click Mount Each
filesystem yourself and click OK.

When prompted for a directory for the EJB code, select the
uml Ej bCode file system and click OK.

Wait for the generation process to complete before continuing.

When prompted for a directory for the web code, select the
urm WebCode file system and click OK.

Wait for the generation process to complete before continuing.

In the Explorer [Code Model] open the unl WebCode node and
observe that all the . j sp files have been locally modified.

To incorporate all the code changes into the CVS repository, the
architect must execute a Commit command. However, before you
can perform a commit, you must check to see if any of the files in
the CVS repository have been updated. To recursively refresh the
CVS status for all files in the um WebCode folder, right-click the
um WebCode folder and choose CVS>Refresh Recursively. The
Explorer [Code Model] updates the CVS status for the files in the
unm WebCode folder.

1-322

Tutorials

OptimalJd 3.1

Figure 1-149

The Refresh command has revealed the following:

= Even though all the . j sp files had been marked as locally
modified, the content of several files (for example,
Mai nMenu. j sp) is no different than the content already in the
CVS repository. This is why these files are now marked as Up-to-
date.

= Several files have been modified and will need to be committed to
the CVS repository.

= The Cust oner Mai nt Br owse. j sp file, which had been modified
by the developer, will need to be merged (via the Update
command) before it can be committed to the CVS repository.

11.To recursively incorporate all file updates in the um WebCode
folder, right-click the um WebCode node and choose
CVS>Update.

Using OptimalJ: Tutorials 1-323

OptimalJd 3.1

Figure 1-150 Output from Update command

The Output of VCS Commands [Update] window shows that
several files are modified and need to be committed to the CVS
repository. Onefile, Cust oner Mai nt Br owse. j sp was merged. In
the Explorer [Code Model] you can see that the version for

Cust oner Mai nt Browse. j sp has increased to version 1.3 due to
the merge operation.

Note: If the Type column for Cust omer Mai nt Br owse. j sp showed a C,
this would indicate that a merge conflict exists and need to be manually
resolved.

12. Double-click Cust oner Mai nt Br owse. j sp and verify that the
developer's addition of the bi rt hday property has been merged
from the CVS repository. Close the Source Editor when you are
done.

13.To recursively commit all changes in the uni WebCode folder,
right-click the um WebCode node and choose CVS>Commit.

1-324 Tutorials

OptimalJd 3.1

Figure 1-151 Commit comment for adding middlelnit

Enter a Log Message of Added mi ddl el nit domai n cl ass and
click OK. The Output of VCS Commands [Commit] window logs
the activity. Click Close to dismiss this window.

14.To incorporate the remaining changes into the CVS repository,
commit the changes in the um Ej bCode and um Model folders.

= Right-click the um Ej bCode node and choose CVS>Commit.
= Right-click the um Mbdel node and choose CVS>Update.
= Right-click the um Model node and choose CVS>Commit.

Tip: When prompted for a Log Message, click Previous to recall the text
from the last operation.

Step 10 - Developer updates project with middlelnit change
Now the developer needs to incorporate the changes that the architect
made.

1. Take the role of the developer. Choose Project>Project
Manager. Click the CVSDev project and click Open. The CVSDev
project opens.

Using OptimalJ: Tutorials 1-325

OptimalJd 3.1

2. In the Explorer [Code Model], open the um WebCode folder and
observe that Cust omer Mai nt Br owse. j sp is still back at version
1.2.

Note: We already know that the architect has committed version 1.3 to the
CVS repository.

3. Torecursively incorporate updates from the CVS repository, right-
click the um WebCode node and choose CVVS>Update. The
Output of VCS Commands [Update] window logs the activity.
Click Close to dismiss this window.

4. To incorporate the remaining changes from the CVS repository,
update the um Ej bCode and um Model folders.

= Right-click the um Ej bCode node and choose CVS>Update.

= Right-click the um Mbdel node and choose CVS>Update.
The developer's project is now synchronized with the architect's
changes.

This tutorial has provided an overview of the typical setup and workflow
associated with using a CVS repository with OptimalJ.

Further reading
General CVS documentation is available from the following locations:

= http://www.gnu.org/manual/cvs-1.9/html_chapter/cvs_toc.html.
= http://www.cvshome.org/

Refer to the Using Version Control in the IDE section in the Core IDE
Help for more information on the CVS support in the NetBeans
environment.

1-326 Tutorials

	Title
	Contents
	1 Tutorials
	1.1 Your first OptimalJ application
	1.2 Creating a new project
	1.3 Setting up a SOLID database
	1.4 Importing a domain class model
	1.5 Generating a domain model from database definitions
	1.6 Creating and distributing domain patterns
	1.7 Defining a domain service model
	1.8 Defining a component model
	1.9 Modifying Access Behavior
	1.10 Adding business rules
	1.11 Creating a two-tier application (DAO component)
	1.12 Using the page iterator in a multitier environment
	1.13 Creating message-driven components
	1.14 Creating JMS durable subscribers
	1.15 Defining presentation model extensions
	1.16 Integrating with CORBA
	1.17 Integrating with CICS COBOL via JCA
	1.18 Integrating with CICS COBOL via JMS
	1.19 Integrating with IMS COBOL
	1.20 Handling the COBOL REDEFINES clause
	1.21 Integrating a Web service
	1.22 Developing and deploying a Web service
	1.23 Creating the application EAR
	1.24 Creating your own technical key generator
	1.25 Creating Implementation Patterns
	1.26 Creating technology patterns
	1.27 Creating metamodels
	1.28 Changing the default OptimalJ metamodels
	1.29 Installing a local CVS server
	1.30 Working with OptimalJ projects in CVS

