
Modeling with SoaML, the Service-Oriented
Architecture Modeling Language: Part 1. Service
Identification
Skill Level: Advanced

Jim Amsden (jamsden@us.ibm.com)
Senior Technical Staff Member
IBM

07 Jan 2010

This article is the first in a series of five articles about developing software based on
service-oriented architecture (SOA). It shows how to use UML models extended with
the OMG SoaML standard to design an SOA solution that is connected to business
requirements, yet independent of the solution implementation. The author describes
the business goals and objectives and the business processes implemented to meet
those objectives, and then explains how to use the processes to identify
business-relevant services necessary to fulfill the requirements that they represent.

How modeling improves SOA

The power of a service-oriented architecture (SOA) is in its ability to enable business
agility through business process integration and reuse. SOA achieves this in two
ways: By encouraging solutions organized around reusable services that
encapsulate functional capabilities separated from their implementations and by
providing facilities for managing coupling between functional capabilities. Modeling
can be used to bridge the gap between business requirements and a deployed
services-based solution. SoaML models raise the level of abstraction to allow you to
focus on business services. Model-driven development approaches can be used to
generate the designed solution implementations for platforms such as Java™
Platform, Enterprise Edition (JEE), IBM® CICS®, or Web-Oriented Architectures
(WOA) by using RESTful Web services that meet business functional and
nonfunctional objectives while enabling business agility.

Part 1. Service Identification
© Copyright IBM Corporation 2010. All rights reserved. Page 1 of 19

mailto:jamsden@us.ibm.com
http://www.ibm.com/legal/copytrade.shtml


The term service-oriented architecture (SOA) has several connotations.
Practitioners commonly use SOA both to define an architectural style and to
describe a common IT infrastructure that enables IT systems that are built by using
that architectural style to operate. These are useful technology-focused
perspectives, but, by themselves, they are not enough.

To achieve its potential, an SOA-based IT infrastructure (hereafter referred to as
simply SOA) needs to be business-relevant, thus driven by the business and
implemented to support the business. We need a way of designing SOA solutions
that are connected to the business requirements that they fulfill. This is hard to do if
the business requirements are given as a simple list of requirement items and the
level of abstraction of the SOA is captured in several XML documents that describe
a collection of Web services.

What we need is a way to formalize business requirements and raise the level of
abstraction so that SOA can more closely resemble business services and how
those services might meet business goals and objectives. This ties the deployed
solution to its intended business value. At the same time, we need a way of isolating
business concerns from the evolving SOA platforms that support them.

Modeling and model-driven development (MDD) can help achieve these goals.
Models allow us to abstract away the implementation details and focus on the issues
that drive business and architectural decisions. To some extent, the approach that
we will be describing applies one of the fundamental principles of SOA to business
and solution development: separation of concerns and loose coupling. Here, we
cleanly separate the tasks and responsibilities of business analysts from those of IT
staff members.

Creating agile, timely, reusable IT solutions to business problems can be difficult. It
requires a focus on architecture that separates concerns and reduces coupling
between parts, especially when solution components are owned by different
organizations. Being able to rapidly respond to change through innovative integrated
business solutions is even harder. Integration and interoperability require standards
for components developed by different organizations at different times to be plugged
together into new solutions. SoaML (Service-Oriented Architecture Modeling
Language) is an Object Management Group (OMG) standard that is intended to fill
this gap and to help realize the potential of SOA. SoaML is a small set of extensions
to UML to support SOA modeling. It provides an abstraction of SOA that focuses on
describing the needs and capabilities of participants and connecting them in service
value chains.

SoaML offers several benefits

• Enables interoperability and integration at the model level

• Provides a higher level of abstraction separate from platform variability

developerWorks® ibm.com/developerWorks

Part 1. Service Identification
Page 2 of 19 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


and the complexity of lower-level Web services XML document standards

• Addresses business integration and service interaction concerns at the
architectural level by using architecture as the bridge between business
requirements and automated IT solutions

• Enables SOA both on and between existing platforms through
model-driven architecture (MDA)

• Allows for flexible platform choices

• Decouples solution architecture platform implementations to prevent
existing solutions from inhibiting platform evolution

• Leverages and integrates with existing OMG standards for end-to-end life
cycle development and management

About this series on modeling SOA

This series of articles shows how to use UML models that are extended with the
OMG SoaML profile to design an SOA solution that is connected to business
requirements, yet independent of the solution implementation. It is generally easier
to understand concepts by following a concrete, typical, and complete example. That
is the approach we'll take here. We won't spend much time dealing with SoaML
details but will, instead, focus on how you can use SoaML to help with design and
development.

Although this series of articles is about Web services solutions from SoaML models,
we start here by focusing on the business goals and objectives that we're trying to
achieve, so that we ground our solution in achieving something of value to the
business. We then explore a business process that models what has to be done in
the business to achieve those goals and objectives. This will provide the business
functional requirements that the solution has to meet. We then use this business
process to help identify needed business capabilities that can be realized as
services in a designed solution that meets the business requirements.

In follow-on articles in this series, we'll create service specifications and
implementations that fulfill those requirements with an architecture that enables
future reuse and business agility. Finally, we'll use MDD to generate a Web services
solution that can be deployed and executed.

To make the example even more real, we'll use existing IBM® Rational® tools to
build the solution artifacts and link them together, so that we can verify the solution
against the requirements and more effectively manage change. In addition, we
extend the unified modeling language (UML) for services modeling by adding the
OMG SoaML Profile to the UML models in IBM® Rational® Software Architect.
Table 1 provides a summary of the overall process that we'll use in developing the

ibm.com/developerWorks developerWorks®

Part 1. Service Identification
© Copyright IBM Corporation 2010. All rights reserved. Page 3 of 19

http://www.ibm.com/legal/copytrade.shtml


example and the tools used to build the artifacts.

Table 1. Development process roles, tasks, and tools
Role Task Tools

Business executive Convey business goals and
objectives

IBM® Rational® Requirements
Composer

Business analyst Analyze business requirements IBM Rational Requirements
Composer

Software architect Design the architecture of the
solution

IBM® Rational® Software
Architect

Web services developer Implement the solution IBM® Rational® Application
Developer

This series of articles focuses on how to capture business requirements, build
services models that fulfill them, and create and deploy solutions that realize the
designs. We will also highlight the supporting tools demonstrating the services
modeling capabilities currently offered by the IBM tools listed in Table 1. These
articles do not focus much at all on methods or techniques for discovering
requirements, approaches for analyzing and evaluating services solutions, or
approaches to partitioning services into various architectural layers. For further
information on those important topics, see IBM® Rational Unified Process® (RUP®)
for SOMA (see Resources for links). These IBM® Rational® Method Composer
plug-ins provide development processes, guidance, tool mentors, and articles that
explain additional ways to use the tools to develop complete service models and
solutions.

Purchase Order Process example

This example is based on the Purchase Order Process example taken from the
OMG SoaML standard, and it is based on an example in the BPEL 1.1 specification
(see Resources). The BPEL 1.1 spec contains only a partial solution, because
correlation sets aren't defined, the business data is incomplete, and there is no fault
handling or compensation. This version of the example includes some made-up data
for completeness — in particular, data needed for correlation.

The example starts by using IBM Rational Requirements Composer to describe the
business motivation that establishes the business goals and objectives that are to be
achieved. This is followed by a high-level business process also captured using
Rational Requirements Composer that sketches the business organizational and
operational requirements necessary to meet the goals and objectives. These
motivations and process models establish a context for identifying services that are
connected to the business requirements.

After we understand the business requirements, we can proceed to the development

developerWorks® ibm.com/developerWorks

Part 1. Service Identification
Page 4 of 19 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


of services that meets these requirements. The first step in an SOA solution is to
identify the services. To do this, we will treat the business process as a Service
Requirements contract. Then service specifications and service providers are
designed and connected together in a manner that fulfills the business requirements
while addressing software architectural concerns.

This process of identifying candidate services from a business model is also known
as domain decomposition. IBM Rational Unified Process (RUP) for SOMA describes
domain decomposition and several other approaches which, when used collectively,
provide heightened assurance of identifying all the capabilities and services that are
needed by the business.

Business requirements

Usually, business analysts will focus on business organizational and operational
requirements necessary to meet business goals and objectives that achieve some
business vision. Often, they are not concerned with (nor sufficiently skilled to deal
with) IT concerns, such as reuse, cohesion and coupling, distribution, security,
persistence, data integrity, concurrency, failure recovery, and so forth. Further,
business process modeling tools do not often have the capabilities necessary to
address these concerns, and, if they did, they probably would not be effective tools
for business analysts. In this section, we use sketches of business process models
to identify the business capabilities needed to meet some business objectives.

Scenario: A consortium of companies has decided to collaborate to produce a
reusable service for processing purchase orders. These are the goals of this project:

• Establish a common means of processing purchase orders

• Ensure that orders are processed in a timely manner and deliver the
required goods

• Help minimize stock on hand and inventory maintenance costs

• Minimize production and shipping costs

Figure 1 shows the requirements captured in Rational Requirements Composer.
Notice that the Process Purchase Order business use case meets all of our
business goals.

Figure 1. Business requirements shown in Rational Requirements Composer

ibm.com/developerWorks developerWorks®

Part 1. Service Identification
© Copyright IBM Corporation 2010. All rights reserved. Page 5 of 19

http://www.ibm.com/legal/copytrade.shtml


Larger view of Figure 1.

We also create specific objective (or key performance indicator) that quantifies the
"Timely order processing" goal (see Figure 2).

Figure 2. Objectives quantify goals

developerWorks® ibm.com/developerWorks

Part 1. Service Identification
Page 6 of 19 © Copyright IBM Corporation 2010. All rights reserved.

fig01_lg.html
http://www.ibm.com/legal/copytrade.shtml


Larger view of Figure 2.

This objective will be something that we will want to observe in the business process
model that realizes the business use case, will become a constraint in our SOA
solution, and will be something that is monitored in our deployed Web service. This
will allow the service to be monitored and managed to ensure that the business
goals and objectives are actually met.

Business organizational processes

The business analysts from the member companies analyzed the requirements and
determined that the following BPMN (Business Process Modeling Notation) business
process captured in Rational Requirements Composer meets the business
objectives, as well as business operational constraints. This process is intended to
be sufficiently complete and detailed that it could be used as the basis of a formal
service contract between the parties. Therefore, our SOA solution that meets these
business requirements should adhere strictly to these business requirements (Figure
3).

Figure 3. Purchase Order Process business process model

Larger view of Figure 3.

The Purchase Order Process initiates three parallel activities: one for managing
production and shipping scheduling, another for price calculation and invoicing, and

ibm.com/developerWorks developerWorks®

Part 1. Service Identification
© Copyright IBM Corporation 2010. All rights reserved. Page 7 of 19

fig02_lg.html
fig03_lg.html
http://www.ibm.com/legal/copytrade.shtml


a third for shipping the ordered products. Processing starts by initiating a price
calculation based on the products ordered. This price is not yet complete, however,
because the total invoice depends on where the products are produced and the
amount of the shipping cost. At the same time, the order is sent to production to
determine when the products will be available and from what locations. In parallel,
the process requests shipping and then waits for a shipping schedule to be sent
from a production scheduling provider. After the production schedule is available, the
invoice can be completed and returned to the customer.

We also linked the Purchase Order Process to the Purchase Order Process
business use case to indicate the process realizes the use case (Figure 4).
Realization is a formal term in use case modeling that indicates the relationship
between a specification of something and its various implementations.

Figure 4. Linking business processes to the business use cases that they
implement

You can use this link to navigate between the business process and the business
use case that it realizes.

The next section treats the business process as a specification of business
requirements and shows how to identify capabilities and services needed fulfill the
business operational requirements.

Services project organization

We are now ready to create a model to meet these requirements. Our solution will

developerWorks® ibm.com/developerWorks

Part 1. Service Identification
Page 8 of 19 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


fulfill these requirements by identifying the capabilities, exposing appropriate
capabilities as services, and then defining the architecture for how the services
interact. When we design the solution, we need to specify the services, design their
interfaces, and decide how they will be implemented (which service providers
provide what services and how). This establishes the dependencies among the
service participants and establishes the coupling in the system. Managing this
coupling is a major part of designing SOA-based services. By separating the
business requirements from the services, we have the flexibility to design the SOA to
meet both the business and IT system requirements. This keeps the business
requirements from overly constraining the SOA solution, which could lead to less
reuse and less business agility.

First, we create a Rational Software Architect services modeling project called
PurchaseOrderProcess. That project contains a services model called
PurchaseOrderProcess. This model consists of an information model for the
services, service data, specifications of the provided and required interfaces, and
components providing the required services. But, for now, we are focused primarily
on service identification.

As Figure 5 shows, there are five main packages in the PurchaseOrderProcess
model:

• org::ordermanagement contains elements concerned with order
management.

• org::crm contains the data model and common interfaces for some
envisioned customer relationship management standard that service
consumers and service providers have agreed upon for developing
shared services.

• com::acme::credit contains elements concerned with invoicing and
credit management.

• com::acme::productions contains elements that are concerned with
productions and scheduling.

• com::acme::shipping contains elements concerned with shipping.

These packages divide the problem domain into different functional areas. This
helps manage complexity, establishes required name spaces, facilitates reuse, and
keeps separate concerns in different packages (see Figure 7).

Figure 5. Package dependencies diagram

ibm.com/developerWorks developerWorks®

Part 1. Service Identification
© Copyright IBM Corporation 2010. All rights reserved. Page 9 of 19

http://www.ibm.com/legal/copytrade.shtml


This organization could be called the dominant organization of the service model.
Perspective packages can be used to document other ways of organizing the same
model elements, such as by the SOMA method, for example.

Service identification

Some business processes can be run directly on platforms such as IBM®
WebSphere® Process Server. But there are situations where business processes
have not sufficiently addressed IT concerns and could possibly be refactored for
better reuse and to address nonfunctional requirements, such as performance,
scalability, and security. In this case, the business processes may be thought of as
specifications of the requirements for what an IT solution must do.

Capabilities identifying candidate services

We start the service model by identifying the capabilities that are involved in
processing a purchase order. At this point, we are not looking for any detail about
what the services do or how they interact. We just want to create a sketch of what
the required capabilities are and a high-level idea of how they might interact in order

developerWorks® ibm.com/developerWorks

Part 1. Service Identification
Page 10 of 19 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


to identify any additional capabilities.

The details for how these capabilities were identified is beyond the scope of this
article. IBM RUP for SOMA (see Resources) provides a process, methods, and
guidance for how to identify capabilities from business motivation and strategy,
business functional areas, business processes, and existing assets. IBM SOMA
describes three techniques:

• Goal-service modeling, which identifies capabilities needed to realize
business requirements such as strategies and goals

• Domain decomposition, which uses activities in business processes and
other descriptions of business functions to identify needed capabilities

• Existing asset analysis, which mines capabilities from existing
applications

By using goal-service modeling and domain decomposition techniques, we can
identify the capabilities needed to process purchase orders. Figure 6, which follows,
is a simple class diagram in Rational Software Architect that shows the identified
capabilities. The only information given about the capability is its name. These
capabilities were identified by examining the business process and organizing the
tasks into operations of capabilities identified for each swim lane in the process.

The use dependencies in the diagram are shows how these capabilities are intended
to relate to each other. At this point, we do not know what capabilities might be
exposed as services, we don't have complete service specifications, nor do we know
what service participants will provide or require what services. We also have not
modeled any implementations of these services. Therefore, these use dependencies
are simply an indication of anticipated relationships between the capabilities that
might or might not be true when we complete the service specifications and
implementations. However, these dependencies are valuable at this high level,
because they start to identify uses and coupling between systems that needs to be
managed carefully.

Figure 6. Service capabilities

ibm.com/developerWorks developerWorks®

Part 1. Service Identification
© Copyright IBM Corporation 2010. All rights reserved. Page 11 of 19

http://www.ibm.com/legal/copytrade.shtml


We got the capabilities for the Purchase Order Process from the Rational
Requirements Composer business requirements and processes. Service
identification consists of determining which capabilities should be exposed as
services. The IBM SOMA method provides a Service Litmus Test that can be
applied to capabilities to determine which ones should be exposed as services. We
do not cover those details here, so see RUP for SOMA for further information.

The Service Litmus Test would examine each capability and apply various
configurable metrics to determine which one should be exposed as services. Figure
7 shows the services that were identified that expose the capabilities. For example,
the InvoicingService service interface will expose the Invoicing capability. This
means that any participant that provides this service will provide the capability, and
any participant that requests it will use the capability.

Figure 7. Services identified for processing purchase orders

developerWorks® ibm.com/developerWorks

Part 1. Service Identification
Page 12 of 19 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Services architecture

SoaML provides several ways of identifying services. The requirements from the
business process could be viewed as a service architecture, thus indicating the
participants in the business process, the service contracts that specify how they
interact, and the choreography of their services and requests.

A service architecture is a formal specification of the business requirements that are
performed by interacting service participants, without addressing any IT architectural
or implementation concerns. In this case, the service architecture contains the same
information as the original business process and can be treated as a specification for
how to realize that business process.

Figure 8 shows the service architecture for processing purchase orders in IBM®
Rational® Software Modeler. The details for the ServiceContracts referenced in
Figure 8 are not covered in this article, but they will be addressed in subsequent
articles in this series. For now, these ServiceContracts simply indicate the
agreed-upon interactions between participants that play the indicated roles in the
service architecture.

Figure 8: Services architecture for processing purchase orders

ibm.com/developerWorks developerWorks®

Part 1. Service Identification
© Copyright IBM Corporation 2010. All rights reserved. Page 13 of 19

http://www.ibm.com/legal/copytrade.shtml


Larger view of Figure 8.

It helps to spend some time understanding this diagram, because we'll be seeing
similar diagrams as we develop the SoaML solution.

The «ServicesArchitecture» Manufacturer Architecture corresponds to the
Process Purchase Order business process.

Note:
The service architecture is shown using the classifier notation (a partitioned
rectangle), rather than the usual dashed ellipse notation for a UML collaboration.
UML 2 allows either. This example uses the rectangle notation because it has more
room for the roles.

developerWorks® ibm.com/developerWorks

Part 1. Service Identification
Page 14 of 19 © Copyright IBM Corporation 2010. All rights reserved.

fig08_lg.html
http://www.ibm.com/legal/copytrade.shtml


When modeling service requirements or deriving service requirements from
business processes, a service architecture answers these questions:

• What effect is the requirement intended to accomplish? This is the
service architecture name that corresponds to the business requirements.
These names are often verb phrases that indicate what the collaborating
roles are intended to accomplish.

• Who participates to get it done? The service architecture roles specify
the participants who interact to achieve the desired results.

• What are the roles responsible for? The types of the roles represent
service participants. The responsibilities of the participants are specified
by the service contracts that connect them. Anything in our services
solution that plays a role must be capable of performing these
responsibilities. That is, they must implement operations specified by the
service contracts

• What roles interact? That is, which roles have to communicate with
other roles? This establishes dependencies between the roles. This
interaction is shown by references to service contracts defining the
permissible interactions between the participants.

• What are the rules for how the roles interact? This is the behavior
owned by the service architecture. The behavior could be an activity,
interaction, state machine, or opaque behavior (code, for instance). This
behavior says when the services of the roles are requested and may
indicate the information exchanged between them.

• How do we evaluate whether the requirements were met? A service
architecture can have constraints that specify the conditions that must be
true for the requirements to be satisfied. These constraints correspond to
the business objectives.

The Purchase Order Process is a service architecture with four roles, including one
played by the process itself. These roles could be derived from the business process
by examining the tasks assigned to the roles in the business process swim lanes.
Rational Requirements Composer uses a Business Process Modeling Notation
(BPMN) process-centered view of business requirements; whereas, the service
architecture takes a role-centered view. This provides a more services-oriented view
of business requirements, which makes it easier to bridge the gap between the
process requirements and the architecture of service-oriented solutions.
Alternatively, the service architecture could have been designed to realize the
capabilities that were identified from the business requirements and processes. In
fact, a service architecture could actually be a different view of a BPMN business
process.

The service architecture can have constraints derived from the business objectives.

ibm.com/developerWorks developerWorks®

Part 1. Service Identification
© Copyright IBM Corporation 2010. All rights reserved. Page 15 of 19

http://www.ibm.com/legal/copytrade.shtml


These constraints indicate what the service architecture is intended to accomplish
and how to measure success.

The service architecture can also realize use cases that capture information about
the high-level functional and nonfunctional requirements for the business process
from the perspectives of the key external stakeholders or actors. These use cases
can be viewed in use case diagrams in Rational Requirements Composer or
Rational Software Architect. This maintains the link between the service
requirements contract, business processes, the business use case, and the
business goals and objectives.

Whether you use business capabilities or service architectures, or both, to identify
candidate services is a matter of personal preference. Business capability modeling
is a straightforward way to decompose a business into competencies identifying the
business capabilities and operations, and the relationships between capabilities
needed to meet business objectives. Services architecture modeling provides a
more formal way of specifying the participants and contracts governing their
interactions. Both approaches can be used together. Use the approach most
comfortable for you.

What's next

In this article, we outlined a technique to identify capabilities that are needed to meet
business requirements. We started by capturing the business goals and objectives
for the business vision. We then modeled the business operations and processes
that are necessary to meet the goals and objectives. Then we used the business
process to identify the required capabilities. This provides a formal way of identifying
business-relevant capabilities that are linked to the business goals and objectives
that they are intended to fulfill.

The next article in this series, "Part 2. Service specification," examines the
capabilities and determines which ones should be exposed as services. We will then
elaborate the service interfaces in more detail. Those interfaces will indicate the
provided and required interfaces, the roles that the consumer and provider
participants play in the service interface, and the rules or protocol for how those
using the service operations.

developerWorks® ibm.com/developerWorks

Part 1. Service Identification
Page 16 of 19 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• SoaML, an OMG standard profile that extends UML 2 for modeling services,
service-oriented architecture (SOA), and service-oriented solutions. The profile
has been implemented in IBM Rational Software Architect.

• Daniels, John, and Cheesman, John. UML Components: A Simple Process for
Specifying Component-based Software. Addison-Wesley Professional (2000).

• Service-oriented modeling and architecture: How to identify, specify, and realize
services for your SOA by Ali Arsanjani is about the IBM Global Business
Services' Service Oriented Modeling and Architecture (SOMA) method (IBM®
developerWorks®, November 2004).

• IBM Business service modeling, a developerWorks article by Jim Amsden
(December 2005), describes the relationship between business process
modeling and service modeling to achieve the benefits of both.

• Using model-driven development and pattern-based engineering to design
SOA: Part 2. Patterns-based engineering, Part 2 of a four-part IBM
developerWorks tutorial series by Lee Ackerman and Bertrand Portier (2007).

• Design SOA services with Rational Software Architect, a four-part IBM
developerWorks tutorial series by Lee Ackerman and Bertrand Portier
(2006-2007).

• Model service-oriented architecture with Rational Software Architect: Part 3.
External system modeling, Part 3 of a five-part IBM developerWorks tutorial
series by Gregory Hodgkinson and Bertrand Portier (2007).

• Modeling service-oriented solutions is Simon Johnston's great article describing
the approach to service modeling that drove the development of the IBM UML
Profile for Software Services, the RUP for SOA plug-in (developerWorks, July
2005) and SoaML.

• SOA programming model for implementing Web services: Part 1. Introduction to
the IBM SOA programming model, by Donald Ferguson and Marcia Stockton
(developerWorks, June 2005), describes the IBM programming model for
Service-Oriented Architecture (SOA), which enables non-programmers to
create and reuse IT assets. The model includes component types, wiring,
templates, application adapters, uniform data representation, and an Enterprise
Service Bus (ESB). This is the first in a series of articles about the IBM SOA
programming model and what is required to select, develop, deploy, and
recommend programming model elements.

• Read SOA programming model for implementing Web services: Part 1.
Introduction to the IBM SOA programming model, by Donald Ferguson and

ibm.com/developerWorks developerWorks®

Part 1. Service Identification
© Copyright IBM Corporation 2010. All rights reserved. Page 17 of 19

http://www.omg.org/cgi-bin/doc?ptc/09-12-09
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.ibm.com/developerworks/rational/library/05/1227_amsden/
http://www.ibm.com/developerworks/edu/dw-rt-umlprofiles2.html
http://www.ibm.com/developerworks/edu/dw-rt-umlprofiles2.html
http://www.ibm.com/developerworks/views/rational/libraryview.jsp?search_by=Design+SOA+services+with+Rational+Software+Architect,+Part
http://www.ibm.com/developerworks/edu/r-dw-rt-modsoacase3.html
http://www.ibm.com/developerworks/edu/r-dw-rt-modsoacase3.html
http://ibm.com/developerworks/rational/library/jul05/johnston/
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html
http://www.ibm.com/legal/copytrade.shtml


Marcia Stock, to learn more about Service Data Objects, which simplify and
unify the way applications access and manipulate data from heterogeneous
data sources (developerWorks, June 2005).

• See Web Servoces for Business Process Execution Language for more about
the BPEL 1.1 specification.

• Subscribe to the developerWorks Rational zone newsletter. Keep up with
developerWorks Rational content. Every other week, you'll receive updates on
the latest technical resources and best practices for the Rational Software
Delivery Platform.

• Browse the technology bookstore for books on these and other technical topics.

Get products and technologies

• Download trial versions of other IBM Rational software.

• Download IBM product evaluation versions and get your hands on application
development tools and middleware products from DB2®, Lotus®, Tivoli®, and
WebSphere®.

Discuss

• Check out developerWorks blogs and get involved in the developerWorks
community.

About the author

Jim Amsden
Jim Amsden, a senior technical staff member with IBM, has more than 20 years of
experience in designing and developing applications and tools for the software
development industry. He holds a master’s degree in computer science from Boston
University. His interests include enterprise architecture, contract-based development,
agent programming, business-driven development, Java Enterprise Edition, UML,
and service-oriented architecture. He is a co-author of =Enterprise Java
Programming with IBM WebSphere (IBM Press, 2003) and of the OMG SoaML
standard. His current focus is on finding ways to integrate tools to better support agile
development processes. Jim is currently responsible for developing IBM Rational
software’s Collaborative Architecture Management strategy and tool support.

Trademarks

Trademarked terms commonly used in developerWorks content are attributed on the

developerWorks® ibm.com/developerWorks

Part 1. Service Identification
Page 18 of 19 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
https://www.ibm.com/developerworks/newsletter/
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml


Trademarks page.

ibm.com/developerWorks developerWorks®

Part 1. Service Identification
© Copyright IBM Corporation 2010. All rights reserved. Page 19 of 19

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	How modeling improves SOA
	About this series on modeling SOA
	Purchase Order Process example
	Services project organization
	Service identification
	What's next
	Resources
	About the author
	Trademarks

