
Modeling with SoaML, the Service-Oriented
Architecture Modeling Language: Part 3. Service
realization
Skill Level: Introductory

Jim Amsden (jamsden@us.ibm.com)
Senior Technical Staff Member
IBM

21 Jan 2010

This third article of this five-part series explains how services are actually
implemented. The service realization starts with deciding which participant will
provide and use what services. That decision has important implications in service
availability, distribution, security, transaction scopes, and coupling. After these
decisions have been made, you can model how each service functional capability is
implemented and how the required services are actually used. Then you can use the
UML-to-SOA transformation feature included in IBM® Rational® Software Architect
to create a Web services implementation that can be used in IBM® WebSphere®
Integration Developer to implement, test, and deploy the completed solution.

About this series

In the first article in this series, "Part 1. Service identification," (see "View more
content in this series"), we outlined an approach based on the IBM®
Service-Oriented Modeling and Architecture (SOMA) method for identifying services
that are connected to business requirements. We started by capturing the business
goals and objectives necessary to realize the business mission. We then modeled
the business operations and processes that are necessary to meet the goals and
objectives. Then we used the business process to identify capabilities that are
candidates for exposure through service interfaces.

In the second article, "Part 2. Service specification," we modeled the details of the
service interfaces. A service interface defines everything that potential consumers of

Part 3. Service realization
© Copyright IBM Corporation 2010. All rights reserved. Page 1 of 16

mailto:jamsden@us.ibm.com
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1
http://www.ibm.com/legal/copytrade.shtml


the service need to know to decide whether they are interested in using the service,
plus exactly how to use it. It also specifies everything that a service provider must
know to successfully implement the service. That is, a service interface defines the
possible interactions of consumers and providers through specific interaction points.

In this article, we'll look at designing how the services are actually provided or, in
Unified Modeling Language (UML) terminology, realized. The service realization
design starts with deciding which participants will provide and use what services.
That decision has important implications in service availability, distribution, security,
transaction scopes, and coupling. After these decisions have been made, you can
design how the functional capability of each service is to be implemented and,
therefore, how the required services are actually used. Note that we are not
constrained to a particular level of abstraction in designing our services
implementations. We could be implementing services across different corporations,
services of participants in a manual business process, or information technology
services in some software platform. The same concepts apply at any of these levels
of abstraction or across different concerns. The point is to partition services and
requests among loosely coupled participants assembled in a service value chain.

The next article in this series, "Modeling with SoaML, the Service-Oriented
Architecture Modeling Language: Part 4. Service composition," will describe how
these services can be composed to create new services. The final article, "Part 5.
Service implementation," will use the IBM® Rational® Software Architect UML to
SOA transformation feature to create a Web services implementation that can be
directly used in IBM® WebSphere® Integration Developer software to implement,
test, and deploy the completed solution.

Context of this article

A complete understanding of SOA modeling requires getting to the details of how a
service is actually implemented by providers and used by consumers. If the
implementation is difficult, then perhaps the specification is incorrect or the wrong
services have been identified. This article shows how to design the implementation
of each of the service interfaces that we developed in the previous article. The
implementation design consists of three steps:

1. Decide which service providers provide which services.

2. Design the service implementations.

3. Assemble and connect service consumers and providers that are
necessary to model complete implementations.

Deciding which services are provided by which providers (there could be more than

developerWorks® ibm.com/developerWorks

Part 3. Service realization
Page 2 of 16 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


one) is driven by many factors, including:

• Functional cohesion to maximize reuse

• Where the services are most likely used

• Where they are most likely to be deployed

• What qualities of service are required

• Stability of the functional area

• Where the most change is anticipated

• How much coupling is tolerable in the domain

• Reducing coupling to minimize the effect of change

• Security issues

• Applicable platform implementation technologies

• Integration and reuse of existing systems

A detailed analysis of all of these concerns is beyond the scope of this article, but it
is covered fully in the IBM® SOMA method. Here, we'll assume that, somehow, the
IT architect has decided which participants will provide what services, so we can
focus on how the providers are modeled and assembled into consumer solutions.

Note:
The Service-Oriented Architecture Modeling Language (SoaML) standard uses the
term participant and does not distinguish between service providers and service
consumers. This is because, in general, participants both provide services and use
services in order to do so. It is clear from the service and request ports of a
participant what is actually provided and consumed, making it unnecessary to also
further characterize the participant itself.

As with all of the articles in this series, we'll use existing IBM® Rational® tools to
build the solution artifacts and link them together, so that we can verify the solution
against the requirements and more effectively manage change. In addition, we
extend the Unified Modeling Language (UML) for services modeling by adding the
Object Management Group (OMG) SoaML Profile to the UML models in IBM®
Rational® Software Architect. Table 1 provides a summary of the overall process
that we'll use in developing the example and the tools used to build the artifacts.

Table 1. Development process roles, tasks, and tools
Role Task Tools

Business executive Convey business goals and
objectives

IBM® Rational® Requirements
Composer

Business analyst Analyze business requirements IBM® Rational® Requirements

ibm.com/developerWorks developerWorks®

Part 3. Service realization
© Copyright IBM Corporation 2010. All rights reserved. Page 3 of 16

http://www.ibm.com/legal/copytrade.shtml


Composer

Software architect Design the architecture of the
solution

IBM Rational Software Architect

Web services developer Implement the solution IBM® Rational® Application
Developer (RAD)

Service identification and specification review

Let's start by reviewing the service specifications that were identified and specified in
the previous articles. Figure 1. shows the service interfaces that expose the
capabilities required for processing purchase orders.

Figure 1. Capabilities for processing purchase orders

Figure 2 shows the complete Scheduling service interface. This service interface
is a simple interface, because there is no interesting protocol for using scheduling
services.

Figure 2. The Scheduling service interface

developerWorks® ibm.com/developerWorks

Part 3. Service realization
Page 4 of 16 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Figure 3 shows the ShippingService service specification.

Figure 3. Shipping service interface

This service interface is a little more complicated, because it models the interaction
between a shipper and an orderer by using a simple callback-style interaction.
Because this specification includes a protocol, we model it by using a service
interface that defines the roles (properties) involved in the service protocol. The
responsibilities of these roles are defined by their types, which are the interfaces
provided or required by the service interface. The shippingService interaction
owned by the ShippingService service specification defines the rules for how the
shipper and orderer interact. This interaction will be the contract for service channels
connected to a service defined by this service interface.

Figure 4 shows the InvoicingService service specification.

Figure 4. The InvoicingService interface

ibm.com/developerWorks developerWorks®

Part 3. Service realization
© Copyright IBM Corporation 2010. All rights reserved. Page 5 of 16

http://www.ibm.com/legal/copytrade.shtml


This protocol is also a bit more complicated, because the provided and required
service functional capabilities must be invoked and responded to in a specific order.
In this case, an activity is used to define the service protocol.

Figure 5 shows the Purchasing service specification.

Figure 5. The Purchasing service interface

The Purchasing service interface represents the functional capability specified in the
original Process Purchase Order business process. It represents a service identified
and designed to realize that business process. Because there is no protocol
associated with this specification, we once again model this by using a simple
interface.

Now we are ready to design components that provide each of these services and
realize the exposed capabilities.

developerWorks® ibm.com/developerWorks

Part 3. Service realization
Page 6 of 16 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Service Realization

A service defines a set of capabilities (provided by service providers) that meet the
needs of service consumers, or users. The first step in service implementation
design is to provision the services. That is, we must figure out which service
providers will be providing which service capabilities. This is a key part of designing
an SOA, because choosing providers establishes the relationships between service
consumers and providers. Therefore, this establishes both the capabilities of a
system and the potential coupling between its parts.

You could put all of the operations into a single service and have a simple solution.
But all clients would depend on that one service, which would result in a very high
degree of coupling. Any change in the provider would result in a possible change in
all consumers. This was a common problem with module libraries in the old days of
C programming. You could also create a separate service for each functional
capability, but this would result in a very complex system that would not reflect good
encapsulation and cohesion. It would also be difficult to model communication
between consumers and providers that follow a protocol for using a set of related
functional capabilities.

In the end, deciding on the service participants is something that takes skill and can
be affected by lots of compromises. Distribution can play a key role. It would be
great if we could design SOA solutions independent of the participant locations, but
that generally isn't very practical. Where a service is deployed in relation to
consumers and other required services can have a profound effect on solution
performance, availability, and security. Ignoring this in the solution architecture may
result in unacceptable solution implementations down the road.

Our problem here is quite simple, so it is not hard to determine what service
participant will provide or consume what services. In fact, the pools and lanes in the
original Business Process Modeling Notation (BPMN) business process sketch gave
a pretty good hint about what participant should provide and consume what services.
The following sections provide models of service providers for all of the services
shown in Figure 1. and the detailed service specifications that follow that figure. This
is a fairly simple example, and many of the participants provide only one service that
has only one capability. This will not generally be the case. Participants will often
provide or consume (or both) many services that have many functional capabilities.
This example is intentionally simple to focus on concepts without getting bogged
down in the details of the example itself.

Note:
The concept of service realization in this article is a little different from that described
in SOMA. In SOMA, service realization deals with architectural decisions concerning
solution templates and patterns, details of SOA reference architecture, technical
feasibility, and prototyping. These are beyond the scope of this series of articles,

ibm.com/developerWorks developerWorks®

Part 3. Service realization
© Copyright IBM Corporation 2010. All rights reserved. Page 7 of 16

http://www.ibm.com/legal/copytrade.shtml


which cover only determining which participants will provide and use what services,
and how.

Invoicing

An Invoicer participant provides the Invoicing service for calculating the initial price
for a purchase order. Then it refines this price when the shipping information is
known. The total price of the order depends on where the products are produced
and where they are shipped from. The initial price calculation can be used to verify
that the customer has sufficient credit or still wants to purchase the products. It is
better to verify this before fulfilling the order.

We start the design of this service provider by creating a system use case that
defines its requirements and a Participant called Invoicer that realizes the use case,
as shown in Figure 6. The Invoicer participant will be in the credit package that
imports the CRM (customer relationship management) package to use the common
service data (message types) definitions.

Figure 6. The initial Invoicer service provider

The Invoicer participant will provide the InvoicingService service. We model this
by adding a Service to the Invoicer, which is of the type InvoiceService
service interface. All services are typed by service interfaces that define what
functional capabilities are provided and required and the protocol for using them.
Figure 7 shows the Invoicer with the invoicing service added.

developerWorks® ibm.com/developerWorks

Part 3. Service realization
Page 8 of 16 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


Figure 7. Adding an InvoicingService to the Invoicer service provider

We can see by the type of the service that it provides the Invoicing interface and
requires the InvoiceProcessing interface. From the service's type, we know
what consumers connected to the service have to do to use the service and what the
Invoicer (or any other provider) has to do to implement it. Any use and
implementation of a service must be consistent with the service's specification and
its protocol.

The Invoicer provides the Invoicing interface, which involves two operations:

• initiatePriceCalculation

• completePriceCalculation

The Invoicer must provide a design for the implementation or method for each of
these service operations that specifies how the operations will be provided. The
method must also invoke the processInvoice operation of the
InvoiceProcessing interface when the price calculation has been completed as
specified in the service protocol. As Figure 8. shows, the Invoicer component owns
two behaviors that have the same name as the provided operations.

Figure 8. Invoicer service implementations

ibm.com/developerWorks developerWorks®

Part 3. Service realization
© Copyright IBM Corporation 2010. All rights reserved. Page 9 of 16

http://www.ibm.com/legal/copytrade.shtml


developerWorks® ibm.com/developerWorks

Part 3. Service realization
Page 10 of 16 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


The completePriceCalculation activity is the method for the
Invoicing::completePriceCalculation service operation. It uses an opaque
action to calculate the total price, and then it invokes the
InvoiceProcessing::processInvoice operation on the invoicing port. (The
target input pin of the processInvoice action is the invoicing service port, as
shown by the activity partition containing the action.) Notice that this is consistent
with the invoicing protocol as specified by the InvoicingService service
interface.

The initiatePriceCalculation opaque behavior is the method for the
initiatePricesCalculation service operation. This operation is implemented
by using natural language or Java™ code captured in the body of the opaque
behavior.

Production scheduling

A production scheduling participant provides the Scheduling service to determine
where goods will be produced and when. This information can be used to create a
shipping schedule used in processing purchase orders.

The Productions participant provides the Scheduling service interface through its
scheduling service port, as shown in Figure 9.

Figure 9. The Productions service provider

ibm.com/developerWorks developerWorks®

Part 3. Service realization
© Copyright IBM Corporation 2010. All rights reserved. Page 11 of 16

http://www.ibm.com/legal/copytrade.shtml


The service operation methods are the requestProductionsScheduling and
sendShippingSchedule behaviors. The details of these implementations are not
shown in the diagram and may be left to be implemented by the developer by using
more applicable, platform-specific languages.

Shipping

A shipping service provider provides the Shipping service interface to ship goods to
a customer for a filled order. It also requires the ScheduleProcessing interface to
request that the consumer process the completed schedule. Figure 10 shows that
the Shipper service provides the shipping service as specified by the
ShippingService service interface.

Figure 10. The Shipper service provider

In this case, we have separated the specification of the Shipper participant from its
realization. This specification participant describes the architecture, both internal and
external, for any realizing participant. We did this because there can be many
different implementations of the Shipper participant specification, each with different
additional capabilities and needs and qualities of service. We have shown one
realizing participant, ShipperImpl. In participant service assemblies, we will use the
Shipper participant specification rather than referring to ShipperImpl directly. Then,

developerWorks® ibm.com/developerWorks

Part 3. Service realization
Page 12 of 16 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml


at deployment or run time, different implementations can be substituted for this
specification to achieve the desired qualities of service.

What's next

We have now finished the identification, specification, and implementation (or
realization) design of the service participants needed to meet the business
objectives. The result is a technology-neutral design model of a service solution
architecture. But we still haven't created a service participant that assembles
services provided by the Invoicer, Productions, and Shipper and uses them to
process a purchase order. The next article in this five-part series, "Modeling with
SoaML, the Service-Oriented Architecture Modeling Language: Part 4. Service
composition," shows how to assemble and connect these service providers and
choreographs their interactions to provide a complete solution for the business
requirements.

ibm.com/developerWorks developerWorks®

Part 3. Service realization
© Copyright IBM Corporation 2010. All rights reserved. Page 13 of 16

http://www.ibm.com/legal/copytrade.shtml


Resources

Learn

• SoaML, an OMG standard profile that extends UML 2 for modeling services,
service-oriented architecture (SOA), and service-oriented solutions. The profile
has been implemented in IBM Rational Software Architect.

• Daniels, John, and Cheesman, John. UML Components: A Simple Process for
Specifying Component-based Software. Addison-Wesley Professional (2000).

• Service-oriented modeling and architecture: How to identify, specify, and realize
services for your SOA by Ali Arsanjani is about the IBM Global Business
Services' Service Oriented Modeling and Architecture (SOMA) method (IBM®
developerWorks®, November 2004).

• IBM Business service modeling, a developerWorks article by Jim Amsden
(December 2005), describes the relationship between business process
modeling and service modeling to achieve the benefits of both.

• Using model-driven development and pattern-based engineering to design
SOA: Part 2. Patterns-based engineering, Part 2 of a four-part IBM
developerWorks tutorial series by Lee Ackerman and Bertrand Portier (2007).

• Design SOA services with Rational Software Architect, a four-part IBM
developerWorks tutorial series by Lee Ackerman and Bertrand Portier
(2006-2007).

• Model service-oriented architecture with Rational Software Architect: Part 3.
External system modeling, Part 3 of a five-part IBM developerWorks tutorial
series by Gregory Hodgkinson and Bertrand Portier (2007).

• Modeling service-oriented solutions is Simon Johnston's great article describing
the approach to service modeling that drove the development of the IBM UML
Profile for Software Services, the RUP for SOA plug-in (developerWorks, July
2005) and SoaML.

• SOA programming model for implementing Web services: Part 1. Introduction to
the IBM SOA programming model, by Donald Ferguson and Marcia Stockton
(developerWorks, June 2005), describes the IBM programming model for
Service-Oriented Architecture (SOA), which enables non-programmers to
create and reuse IT assets. The model includes component types, wiring,
templates, application adapters, uniform data representation, and an Enterprise
Service Bus (ESB). This is the first in a series of articles about the IBM SOA
programming model and what is required to select, develop, deploy, and
recommend programming model elements.

• Read SOA programming model for implementing Web services: Part 1.
Introduction to the IBM SOA programming model, by Donald Ferguson and

developerWorks® ibm.com/developerWorks

Part 3. Service realization
Page 14 of 16 © Copyright IBM Corporation 2010. All rights reserved.

http://www.omg.org/cgi-bin/doc?ptc/09-12-09
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www.ibm.com/developerworks/rational/library/05/1227_amsden/
http://www.ibm.com/developerworks/edu/dw-rt-umlprofiles2.html
http://www.ibm.com/developerworks/edu/dw-rt-umlprofiles2.html
http://www.ibm.com/developerworks/views/rational/libraryview.jsp?search_by=Design+SOA+services+with+Rational+Software+Architect,+Part
http://www.ibm.com/developerworks/edu/r-dw-rt-modsoacase3.html
http://www.ibm.com/developerworks/edu/r-dw-rt-modsoacase3.html
http://ibm.com/developerworks/rational/library/jul05/johnston/
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html
http://www.ibm.com/legal/copytrade.shtml


Marcia Stock, to learn more about Service Data Objects, which simplify and
unify the way applications access and manipulate data from heterogeneous
data sources (developerWorks, June 2005).

• See Web Servoces for Business Process Execution Language for more about
the BPEL 1.1 specification.

• Subscribe to the developerWorks Rational zone newsletter. Keep up with
developerWorks Rational content. Every other week, you'll receive updates on
the latest technical resources and best practices for the Rational Software
Delivery Platform.

• Browse the technology bookstore for books on these and other technical topics.

Get products and technologies

• Download trial versions of other IBM Rational software.

• Download IBM product evaluation versions and get your hands on application
development tools and middleware products from DB2®, Lotus®, Tivoli®, and
WebSphere®.

Discuss

• Check out developerWorks blogs and get involved in the developerWorks
community.

About the author

Jim Amsden
Jim Amsden, a senior technical staff member with IBM, has more than 20 years of
experience in designing and developing applications and tools for the software
development industry. He holds a master’s degree in computer science from Boston
University. His interests include enterprise architecture, contract-based development,
agent programming, business-driven development, Java Enterprise Edition, UML,
and service-oriented architecture. He is a co-author of =Enterprise Java
Programming with IBM WebSphere (IBM Press, 2003) and of the OMG SoaML
standard. His current focus is on finding ways to integrate tools to better support agile
development processes. Jim is currently responsible for developing IBM Rational
software’s Collaborative Architecture Management strategy and tool support.

Trademarks

Trademarked terms commonly used in developerWorks content are attributed on the

ibm.com/developerWorks developerWorks®

Part 3. Service realization
© Copyright IBM Corporation 2010. All rights reserved. Page 15 of 16

http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/index.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
https://www.ibm.com/developerworks/newsletter/
http://www.ibm.com/developerworks/apps/SendTo?bookstore=safari
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/blogs/
http://www.ibm.com/developerworks/community
http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml


Trademarks page.

developerWorks® ibm.com/developerWorks

Part 3. Service realization
Page 16 of 16 © Copyright IBM Corporation 2010. All rights reserved.

http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	About this series
	Context of this article
	Service identification and specification review
	Service Realization
	What's next
	Resources
	About the author
	Trademarks

