
1 Introduction.

The theory of algorithms has undergone an extraordinary development in
the last 20 years. The concept of ”algorithm” is central in computer science.
However, our aim is not to teach our students just a collection of algorithms.
We want to develop the foundamental principles underlaying efficient algo-
rithms and their analysis. Thus, each algorithm is developed starting from
an abstract idea and further unfolded, with hopefully active participation
from the reader, towards greater details and understanding just why each
consecutive step is necessary or what other options are available.

Special attention will be given to understanding of the power that comes
from applying probability in the teory of algorithms, to seeing the variety of
ways in which probability plays a role. One usefull step in understanding this
variety comes from making a clear distinction between the subject of prob-
abilistic algorithms and probabilistic analysis of a (possibly deterministic)
algorithm.

To begin with (Section 1), some tools of the trade in analysis of the al-
gorithms will be discussed. This discussion will be followed (Section 2) by
techniques for proving upper and lower bounds of algorithms and problems.
When discussing the complexity of algorithms, special attention goes to av-
erage complexity (i.e. how does algorithm usually behave). Next (Section
3), few sorting techniques and sorting networks will be presented. in Section
4, we discuss some basics about random graphs. Sections 5-7 contain three
algorithms based on different paradigms on which we will demonstrate our
approach.

Our hope is that by asking questions, doing homework and commenting
on it, correcting mistakes etc, our students will over time help us develop this
subject further and produce the best learning tool in the area of algorithms.
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2 Tools of the trade

We use algorithms to solve problems. A problem P (for example finding
the maximum of a set of numbers) consists of infinite number of problem
instances (one instance of a maximum problem is, for example, compute the
maximum of 3,17,4,11,9). With every problem instance p ∈ P one can asso-
ciate a natural number representing the size of p (for our example maximum
problem size was 5). The way the size is chosen for a given problem is not
unique (we could have chosen to consider the total number of digits in our
maximum problem, then the size would have been 7), but usually there is a
natural choice.

Execution of the algorithm on a machine requires resources, most im-
portant ones being the run time of an algorithm and the amount of space
(memory) it takes. But since each problem has many instances, it is generally
a lot more informative to know about resource requirements of an algorithm,
than to know what resources a particular instance requires (even though the
later one may be also of interest in some cases). Global information such as
run time for an algorithm on an input size n can not be determined by ex-
periment. Two abstractions are generally used: worst case and average case
behaviour. These are topics usually discussed in the course on the complexity
of algorithms.

One can also talk about complexity of problems. An upper bound on
the complexity of a problem is established by designing and analysing an
algorithm that solves the problem. For example, a problem P is quadratic
if there is an algorithm for P whose run time is bounded by a quadratic
function. Nontrivial lower bounds are much harder to establish. To show
that a lower bound is quadratic for some problem P, one must show that
every algorithm that solves P has at least quadratic run time.

Our goal is to fully understand some paradigms based on which algo-
rithms can be designed and to have methods for analysing and comparing so
produced algorithms.

It is very common that the analysis of algorithm produces a sum, usually
finite, for which no representation in primitive terms or known functions
exists. Or, one can come up with representation involving primitive terms or
known functions, but the answer is too complicated for all practical purposes.
The most common method for dealing with such situations is asymptotic
approximation.
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2.1 Asymptotic Notation

Asymptotic analysis is concerned with providing approximations that are
useful when some parameter becomes large. The O, Θ and Ω notations
lead to results that are something in between saying that one function is
approximately equal to another and setting an upper and a lower bound on
a function. Using this notation requires less work than computation of exact
bounds, but it does not give the information on how big is the error at any
point.

The following are the definitions for big O, big Θ, Ω and little o:

• O(f(x)) is the set of all functions g(x) such that there exist positive
constants C and x0 with g(x) ≤ Cf(x) for all x ≥ x0, i.e. f(x) provides
an upper bound for the set of functions g(x), up to a multiplicative
constant.

• Θ(f(x) is the set of all functions g(x) such that there exist positive
constants C, C ′ and x0 with Cf(x) ≤ g(x) ≤ C ′f(x) for all x ≥ x0, i.e.
f(x) provides a lower bound, up to a multiplicative constant.

• Ω is the set of all functions g(x) such that there exist positive constants
C and x0 with g(x) ≥ Cf(x) for all x ≥ x0, i.e. function f(x) and g(x)
behave roughly the same way for large x.

• o is the set of all functions g(x) such that limx⇒∞
g(x)
f(x)

= 0, i.e. for large

x g(x) is much smaller than f(x).

The function f(x) is assumed to be nonnegative.
These notation simplify relations, allowing one to concentrate on domi-

nant terms. But one should never forget that equality signs used with this
notations are not the actual equalities. Thus term error notation is also used
for asymptotic notation.
Here are some examples of the usage:

2n2 = O(n2)

2n2 = Ω(n)
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2n2 + n = Θ(n2)

2n2 = o(n2lnn)

More details about asymptotic notation can be found in [?] and [?].

2.2 Asymptotic Approximation

Before launching into specific tools and examples, we will try to set the
stage a bit and give an intuitive and descriptive approach to most common
situations in which asymptotic estimates are required.

Suppose we are interested in a sequences of numbers. We have four basic
methods for providing information about those numbers.

• A combinatorial description: say P(n) is the number of partitions
in an n-set;

• A formula: the number of involutions of an n set is

n∑
j=0

n!

j!2j(n− 2j)!
;

• A recursion: F0 = 1, F1 = 2 and Fn = Fn−1 + Fn−2 for n ≥ 2;

• A generating function: the ordinary generating function for the
number of comparisons needed to Quicksort an n long list is

−2 ln(1− x)− 2x

(1− x)2
.

Given such information, can we obtain some information about the size
of the terms in the sequence? The answer will depend on the information we
are given. Generally, the situation will be as follows:

• A combinatorial description: It is usually difficult, if not impos-
sible to obtain information about the size of the terms from such a
description.
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• A formula: The formula by itself may be explicit enough. If it is not,
using Stirling’s approximation formula may help. Calculating upper
and lower bound may give a very good answer. If summation is in-
volved, most likely it can be estimated using some of the techniques
disscused below.

• A recursion: It is often possible to obtain some information. A simple
case will be discussed later.

• A generating function: If the generating function converges for some
values of x different than x = 0, it is likely that some tools from analysis
can be used to estimate the coefficients. In this section we will discuss
only some very simple tools.

However, there is generally no simple answer to the the problem of finding
the approximation to some f(n) for large values of n. We must ask how simple
and how accurate approximation is desired.

We will not specify precisely what constitutes a simple expression, but the
following example may give you the feel for it. The expression

√
2πn(n

e
)n is

simpler than the expression n! even though the later is easier to write. Why?
If we limit ourselves to basic operations (addition, multiplication, division
and exponentiation) then the former expression requires the constant number
of operations (six), while the later requires n− 1 operations.

There are wide variations in the degree of accuracy that we might ask for.
Generally, we would like an approximation such that the relative error goes
to zero. In other words, given some f(n) we want to find Apx(fn) such that
|f(n)−Apx(fn)|

Apx(fn)
→ 0 as n→∞. Unfortunately, even when we know that relative

error goes to zero eventually, we do not know what eventually means. It can
take a very long time. Finding an upper and a lower bound is the answer
even though it can sometimes be too difficult to compute and even if one has
a bound it can be overly pessimistic.

Short formulas for upper and lower bounds on a function will, if close
together, contain almost the same information about the size of the function
as an exact formula for the value of the function.

Most upper and lower bound calculations can be done using four groups
of principles. The first group is:
1. In an upper bound one can replace any quantity by another quantity
which is known not to be smaller.
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2. In a lower bound one can replace any quantity by another quantity
which is known not to be larger.

For example, some Linear Search Algorithm has average number of steps
1
2
n + 1

2
. One can obtain a lower bound by dropping the term 1

2
. One can

obtain the upper bound for n ≥ 1 by replacing 1
2

with 1
2
n. Thus,

1

2
n ≤ 1

2
n +

1

2
≤ n.

The second group of principles tells us how to combine upper and lower
bounds arithmetically. Let f(x) and g(x) be two functions with respective
upper and lower bounds fU(x), fL(x), gU(x), gL(x) on some closed interval.
3. The sum of upper (lower) bounds is an upper (lower) bound on the sum:

fL(x) + gL(x) ≤ f(x) + g(x) ≤ fU(x) + gU(x)

4. cfL(x) ≤ cf(x) ≤ cfU(x) when c ≥ 0 5. cfU(x) ≤ cf(x) ≤ cfL(x) when
c ≤ 0 6. Multiplying a nonnegative upper (lower) bound by a nonnegative
upper (lower) bound gives an upper (lower) bound on the product of func-
tions:

fL(x)gL(x) ≤ f(x)g(x) ≤ fU(x)gU(x)

when all the functions are positive.
The next group of principles tells how upper and lower bounds behave

with increasing and decreasing functions. Frequently encountered representa-
tives of increasing functions in the analysis of algorithms are exponential and
logarithmic functions and of decreasing functions the reciprocal, 1

x
(x 6= 0).

7. Let f(y) be an increasing function in the range

min
x0≤x≤x1

gL(x) ≤ max
x0≤x≤x1

gU(x).

Then, for x0 ≤ x ≤ x1

f(gL(x)) ≤ f(g(x)) ≤ f(gU(x)).

8. Let f(y) be a decreasing function in the range

max
x0≤x≤x1

gU(x) ≤ min
x0≤x≤x1

gL(x).
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Then, for x0 ≤ x ≤ x1

f(gU(x)) ≤ f(g(x)) ≤ f(gL(x)).

For example, in a specific random hashing algorithm, the average num-
ber of times a certain step is performed is 1 + k

(N−k)
, where N > k. If we

consider k in the range 0 ≤ k ≤ N
2

, we have N
2
≤ N − k ≤ N by using

Principles 3 and 5. B y principle 8 we obtain k
N
≤ k

(N−k)
≤ 2k

N
. Finally, using

Principle 1, we obtain

1 +
k

N
≤ 1 +

k

(N − k)
≤ 1 +

2k

N
.

These eight principles work for simple examples. In more complex cases,
one often needs an additional principle based on Taylor’s theorem.

Theorem 2.1 If f(x) is a function with a continuous nth derivative on the
closed interval [a,b], and x and x0 are two distinct points of [a,b], then there
exists a point c between x and x0 such that

f(x) =
∑

0≤i≤n

f i(x0)

i!
(x− x0)i +

fn+1(c)

(n+ 1)!
(x− x0)n+1.

Proof: Let Pn(x) be Taylor’s polynomial (i.e. polynomial approximation to
f(x)) and let M be a number defined by

f(α) = Pn(α) +M(α − x0)n+1, α ∈ [a, b], α 6= x0

and let
g(x) = f(x)− Pn(x) +M(x− x0)n+1, a ≤ x ≤ b.

We have to show then that (n+ 1)!M = fn+1(c) for some c between x0 and
α. Taking n + 1 derivatives of g(x) we obtain:

gn+1(x) = fn+1(x)− (n + 1)!M, a < x < b.

The proof is then complete if we show gn+1(x) = 0 for some x between x0

and α. Since P k(x0) = fk(x0) ∀k = 1, . . . , n, we have

g(x0) = . . . = gn(x0) = 0.
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Our choice of M shows that g(α) = 0, so that g′(x1) = 0 for some x1 between
x0 and α. (This follows from the mean value theorem that postulates that
if g(x0) = g(α) = 0, then g′(x1) = 0 for some x1 between x0 and α. Since
g′(α) = 0⇒ g′′(x2) = 0 for some x2 between x1 and α (by applying the mean
value theorem again). After n steps gn+1(xn+1) = 0 for some xn+1 between
x0 and xn, i.e. between x0 and α.

Example. Use the third degree Taylor’s polynomial to approximate the
function lnx. Calculate the value of the polynomial at point 1.1 (i.e. ap-
proximate the value of ln 1.1) and estimate the error.

We first find Taylor’s polynomial of degree three centred at x = 1.

f(x) = ln x f(1) = ln 1 = 0

f ′(x) =
1

x
f ′(1) = 1

f ′′′(x) =
2

x3
f ′′(1) = 2

Pn =
∑

0≤i≤n

f i(x0)

i!
(x− x0)i = (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3

Now the polynomial is simply evaluated at point 1.1 obtaining the result

P3(1.1) ≈ 0.0953. The error term is given by fn+1(c)
(n+1)!

(x − x0)n+1 = f4(c)
4!

(x −
1)4 = − 1

4c4
(x − 1)4. Let x = 1.1. We obtain R3(1.1) = − 1

4c4
10−4. The

maximum of this function on the interval 1 ≤ c ≤ 1.1 is 1
4

at c = 1 and thus
|R3(1.1)| ≤ 2.510−5.

Problem a) Give a third degree polynomial, centred at 1, that approximates

the function x
1
3 . b) Use this polynomial to give approximate value of (1.4)

1
3 .

c) Estimate the error in your approximation.

The principle for bounding the function using Taylor’s theorem can thus be
stated as:
9.

f(x) ≥
∑

0≤i≤n

f i(x0)

i!
(x− x0)i + L(x− x0)n+1.
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f(x) ≤
∑

0≤i≤n

f i(x0)

i!
(x− x0)i + U(x− x0)n+1.

where U and L respectively are upper and lower bound on fn+1(x)
(n+1)!

in the
range of x.

2.3 Euler’s Summation Formula

The Euler’s summation formula gives a difference between an integral and
the corresponding sum. To derive the formula, we consider the area under the
curve, on the desired interval. Interval is then split into n subintervals and
we compare the area of one trapezoid (with the base on subinterval [i, i+ 1]
and the remaining two vertices (i, f(i)) and (i + 1, f(i + 1))) and the area
under the corresponding part of the curve. If we integrate (x− i− 1

2
)f ′(x),

we obtain∫ i+1

i
(x− i− 1

2
)f ′(x)dx = (x− i− 1

2
)f(x)

∣∣∣∣∣ i+ 1
i
−
∫ i+1

i
f(x)dx

=
1

2
[f(i+ 1) + f(i)]−

∫ i+1

i
f(x)dx

That is, our integral is the difference between the area of trapezoid and
the exact area under the curve on subinterval [i, i+ 1].

We would like now to relate the integral for the entire area to the value
of the function at integer points. First, we rewrite x − i − 1

2
in a way that

removes the i dependence. We define the sawtooth function {x} as

{x} = xmod1 = x− bxc.

The integral can now be rewriten as∫ i+1

i
({x} − 1

2
)f ′(x)dx =

1

2
[f(i+ 1) + f(i)]−

∫ i+1

i
f(x)dx.

Let us now sum over all subintervals, i.e. compute

∫ n

1
({x} − 1

2
)f ′(x)dx =

1

2

n−1∑
i=1

[f(i+ 1) + f(i)]−
∫ n

1
f(x)dx
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=
n−1∑
i=1

f(i) +
1

2
[f(n)− f(1)]−

∫ n

1
f(x)dx.

Last equation can now be used to compute integrals from sums or sums
from integrals, provided one can estimate the size of the integral. Since we
will generally be interested in computing sums from integrals, we can rewrite
the above as

n−1∑
i=1

f(i) =
∫ n

1
f(x)dx− 1

2
[f(n)− f(1)] +

∫ n

1
B1({x})f ′(x)dx

where B1(x) is the polynomial x− 1
2
.

Example. Approximate
∑n−1
i=1

1
i
.

n−1∑
i=1

1

i
=
∫ n

1

1

x
dx− 1

2
(
1

n
− 1)−

∫ n

1
B1({x}) 1

x2
dx

= ln x+
1

2
− 1

2
n−

∫ n

1
B1({x}) 1

x2
dx

An approximation to
∫ n
1 B1({x}) 1

x2dx is now needed in order to obtain
the approximation for the sum. We observe that B1({x}) is between −1

2
and

1
2

for any x, so we have

−1

2

∫ n

1

1

x2
dx ≤

∫ n

1
B1({x}) 1

x2
dx ≤ 1

2

∫ n

1

1

x2
dx

or

−1

2
(1− 1

n
≤
∫ n

1
B1({x}) 1

x2
dx ≤ 1

2
(1− 1

n
dx.

Therefore,
∑n−1
i=1

1
i

= lnn + O(1). However, a better approximation can
be obtained by integrating

∫ n
1 B1({x}) 1

x2dx by parts again. As this pro-
cess of integration by parts is continued, a sequence of Bernoulli polynomi-
als is obtained. The Bernoulli polynomial Bm(x) is defined recursively as∫
mBm−1(x)dx with integration constant equal to 1. The Bernoulli num-

bers Bm, which are coefficients of Bernoulli polynomials, are defined by the
recurrence

B0 = 1, Bn =
−1

n + 1

n−1∑
i=1

(
n+ 1
i

)
Bi, n ≥ 1.
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Except for B1 all the Bernoulli numbers of odd index are zero. The first
few Bernoulli numbers are: B0 = 1, B1 = −1

2
, B2 = 1

6
, B3 = 0, B4 = − 1

30
,

B5 = 0, B6 = 1
42

, B8 = − 1
30

, B10 = 5
66
. . ..

The Bernoulli polynomials are then given by

Bm(x) =
m∑
i=0

(
m
i

)
Bix

m−i.

For m ≥ 1, integration by parts yields∫ n

1
Bm({x})fm(x)dx =

1

m + 1
(Bm+1f

m(n)−Bm+1f
m(1)−

∫ n

1
Bm+1({x})fm+1(x)dx).

Repeated application of the last equation gives so called Euler’s general
summation formula:

n−1∑
i=1

f(i) =
∫ n

1
f(x)dx+

m∑
i=1

Bi

i!
(f i−1(n)− f i−1(1)) +Rm

where

Rm =
(−1)m+1

m!

∫ n

1
Bm({x})fm(x)dx).

The remainder Rm will be small when Bm({x})fm(x)
m!

is small. It is known
that |Bm({x})| ≤ |Bm| when m is even and that∣∣∣∣∣Bm({x})fm(x)

m!

∣∣∣∣∣ ≤
∣∣∣∣∣ 4

(2π)m

∣∣∣∣∣
so Bm({x})fm(x)

m!
does not cause any trouble. On the other hand for many

functions fm(x) becomes large for large m. In such cases, for fixed x, there
is a best value of m at which Rm has its minimum. This will not be dealt
with here.

When Euler’s formula is applied to slowly varying functions, the error
term rapidly decreases as the order of approximation increases. However, if
function values vary rapidly for small values, one must be careful in applying
the formula directly. An example or rather rapidly varying function for small
values of the argument is function f(i) = 1

i
. The sum

∑n
i=1

1
i

was mentioned
earlier. It is called the n-th Harmonic number

Hn =
n∑
i=1

1

i
.

11



We have applied Euler’s formula to this function and have obtained the
result Hn = lnn+O(1). Let’s see what result gives the application of Euler’s

general summation formula. Substituting f(x) = 1
x

and fm(x) = (−1)mm!
xm+1

into general formula yields:

Hn−1 = lnn+
m∑
i=1

Bi

i
(−1)i−1(

1

n(i)
− 1) +Rm.

The error term here however, is not decreased as m increases. One can
remedy this by considering the value of the error as n becomes large and
subtract off the limiting value as follows:

γ = lim
n→∞

(Hn−1 − lnn) =
m∑
i=1

Bi

i
(−1)i −

∫ ∞
1

Bm({x})
xm+1

.

The constant γ is called Euler’s constant and its value is 0.57721... Now,

m∑
i=1

Bi

i
(−1)i −

m∑
i=1

Bi

i
(−1)i−1(

1

ni
− 1) =

m∑
i=1

Bi

ini
(−1)i

and ∫ ∞
1

Bm({x})
xm+1

dx−Rm =
∫ ∞
n

Bm({x})
xm+1

dx.

Thus,

Hn−1 = lnn + γ +
m∑
i=1

Bi

ini
(−1)i +

∫ ∞
n

Bm({x})
xm+1

dx.

Evaluating the last formula for m = 8 and adding 1
n

to both sides gives

Hn = lnn+ γ +
1

2n
+

1

12n2
+

1

120n4
+

1

256n6
+O(

1

n8
).

The most common way that harmonic numbers arise in algorithm analy-
sis is from finding the largest of n numbers. When one looks at the numbers
from the first to last, the probability that the first is the largest is 1, the
probability that the second is largest is 0.5, etc. The sum of these probabili-
ties gives the expected number of new maximums, so the average number of
new maximums is Hn.
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2.4 Stirling’s Approximation

To approximate the factorial function n!, one can start by looking at the
logarithm of n!. Since n! = n(n − 1)(n − 2) . . . 21, lnn! = lnn + ln(n −
1) + ln(n − 2) + . . . + ln 2 + ln 1. Since n! is a rapidly varying function,
Euler’s summation formula can not be applied to it directly. But lnn! is a
slowly varying function, so Euler’s summation formula can be used on it. An
accurate approximation of the logarithm of n! leads to an approximation for
n! itself which has small relative error, but not necessarily a small absolute

error. Using f(x) = ln x, we have fm(x) = (−1)m+1(m−1)!
xm

and
∫ x

1 f(y)dy =
x ln x− x+ 1. Eulers general summation formula then gives

ln(n− 1)! = n lnn− n+ 1− 1

2
lnn+

∑
1<i≤m

Bi(−1)i

i(i− 1)
(

1

ni−1
− 1) +Rm,

where

Rm =
1

m

∫ n

1

Bm({x})
xm

dx for m ≥ 2.

Again, as we did with harmonic numbers, we look at the limit as n ap-
proaches infinity of

lim
n→∞

(lnn!− n lnn + n− 1

2
lnn) = 1 +

∑
1<i≤m

Bi(−1)i+1

i(i− 1)
+ lim

n→∞
Rm.

One should notice here that Rm really is a function of n as well and that this
limit exists. Therefore, let us give a name to this limit, i.e. let limn→∞Rm =
σ. Without computing the values of the limits in a moment, we can now write

lnn! = (n+
1

2
) lnn− n + σ +

∑
1<i≤m

Bi(−1)i

i(i− 1)
+O(

1

nm
).

Setting m = 3 and taking exponentials gives

n! = eσ
√
n(
n

e
)ne( 1

12n
+O( 1

n3 )).

We should now find the value of σ. Let us consider the expression
√
n(2n)!

4nn!n!
.

Evaluating this expression using the above formula for n!, we get
√
n(2n)!

4nn!n!
=

√
2

eσ
(1 +O(

1

n
))
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so that the limit as n approaches infinity of this expression is
√

2
eσ

. If another
way of evaluating the limit can be found, then σ can be computed. So we
try √

n(2n)!

4nn!n!
=
√
n

1 · 2 . . . 2n
2 · 4 . . . 2n · 2 · 4 . . . 2n.

If we square this expression, we obtain

n(
(2n)!

4nn!n!
)2 =

n

2n + 1

∏
1≤i≤n

(
(i− 1

2
)(i+ 1

2
)

i · i ).

If we take the limit as n goes to infinity of this last expression, we obtain
Gamma functions on the right hand side, and knowing their values, we obtain:

lim
n→∞

n(
(2n)!

4nn!n!
)2 =

Γ(1)Γ(1)

2Γ(1
2
)Γ(3

2
)

=
1

π
.

From this we can now easily find that

eσ =
√

2π

and so, finally, obtain Stirling’s approximation formula

n! =
√

2πn(
n

e
)ne( 1

12n
+O( 1

n3 )).

This approximation will be good enough for our purposes. However, we
remark that better approximations can be obtained by expanding the expo-
nential in a power series.

2.5 Approximating Binomial Coefficients and some Ba-
sic Counting Techniques

In combinatorics, binomial coefficients in importance come right after natural
numbers. They appear in various contexts and diguises. Usually, the first
encounter with them is through so called binomial theorem

(a+ b)n =
n∑
i=0

(
n
i

)
aibn−i.
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Combinatorial interpretation of binomial coefficients is the famous count-
ing the number of ways in which one can select k distinct objects out of the
set of n objects. This can also be viewed as the number of k-permutations
taken from an n set in which order does not matter, so we have(

n
k

)
=
P (n, k)

P (k, k)
=

n!

(n− k)!k!

Using Stirling’s formula, one can obtain the following asymptotic values
for binomial coefficients(
n
k

)
=

(
n

2πk(n− k)

) 1
2
(
n
k

)k (
n

n− k

)n−k
(1+

1

12
(
1

n
−1

k
− 1

n− k )+O(
1

kn(n− k)
)).

If j = n
2
− k = o(n), then

(
n
k

)
=
(

2

πn

) 1
2

2ne
−2j2

n .

Thinking in the counting context, we can relax the condition that objects
are distinct, and consider having n objects, n1 of which are of one kind (say
red), n2 of the second kind (blue) etc. Then the number of permutations
(with duplication) is so called multinomial coefficient(

n
n1n2 . . . nk

)
=

n!

n1!n2! . . . nk!
.

Example. How many walks are there in a sqare lattice that begin and end
in origin?
It is easy to see that the number of steps up must be the same as the number
of steps down, as well as that the number of steps to the left must be the
same as the number of steps to the right and that total number of steps has
to be even, let’s say 2n. Let W (k) be the number of walks in which we make
k steps up. Then we also make k steps up, and we make n− k steps to the
left, as well as to the right. Then

W (k) =
(2n)!

k!2(n− k)!2
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The final answer is the sum over all possible numbers of steps up
∑n
k=0W (k).

In a similar vein, one can consider combinations (selections) with repetitions
allowed. Imagine that we have n objects and want to select k of them,
with freedom to select the same object more than once. Or, equivalently, as
having objects of n different types, each type in unlimmited supply (acctually
k copies of each suffice). In how many ways can we select k of these objects?
The answer to this question can be found quite elegantly by establishing
bijection between our formulation and finding integer solutions to equation
x1 + x2 + . . .+ xn = k. In fact, we have

Theorem 2.2 Let k and n be naturl numbers. Then the number of ways
to choose k objects from a collection of n distinct objects with repetition
allowed is equal to the number of solutions in natural numbers to the equation
x1 + x2 + . . .+ xn = k and that number is(

n+ k − 1
k

)
.

Proof: we will establish a one-to-one correspondence between combinations
and solutions to the equation. To specify a selection of k objects from the set
of n objects with repetition allowed, it sufice to specify how many times the
first object is picked, how many times the secon and so on. Thus the selection
is uniquely determined and determines a n-tuple of integers (x1, x2, . . . , xn)
such that each xi ≥ 0 and x1 + x2 + . . . + xn = k. It remains to determine
the number of solutions to the equation. Now, consider all strings of length
n+ k − 1 consisting of k ∗ and n− 1 \. For example

\ ∗ \ ∗ ∗\\ ∗ ∗ ∗ \\\ (k = 6, n = 7).

It is easy to see that the cardinality of this set is

(
n+ k − 1

k

)
(there are

n+ k − 1 positions, k of them to be filled with ∗). Correspondence between
strings and solutions to the equation is a simple one: the number of ∗ before
the first \ corresponds to x1, between first and second \ to x2 and so on.
This completes the proof.
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Example. Determine the number of ordered partitions of positive integer
k into n positive parts. Let x1, x2, . . . , xn be parts into which we want to
partition. Each xi ≥ 1. let us then substitute xi by x′i = xi − 1. Then we
ask for the number of solutions to x′1 + x′2 + . . .+ x′n = k − n, x′i ≥ 0. It is
now easy to see that the answer is(

n + (k − n)− 1
k − n

)
=

(
k − 1
k − n

)
=

(
k − 1
n− 1

)
.

Often one discovers interesting relations involving binomial coefficients
by counting in two different ways.
Example. How many different committees with 4 or 5 members is it possible
to appoint from US senate which has 435 members?
The streight forward answer is(

435
4

)
+

(
435
5

)
.

Looking at the problem a bit differently, we can think of senate as having
436 members, one of which is fictive (a dummy). Now, all we want is 5
members committees from these 436 members. In whichever committee a
dummy appears, we will regard it as a four member committee. Therefor,
the answer is (

436
5

)
.

This produces the identity(
n
k

)
+

(
n

k + 1

)
=

(
n + 1
k + 1

)
.

This identity is known as Pascal’s identity. All sorts of interesting pat-
terns, theorems and conjectures emerge from this identity. It is also very
handy for demonstrating the logic of combinatorial, algebraic and inductive
proving methods. So we will take a bit of digression and prove the identity
using those three methods.
1. Pascal’s identity, combinatorial proof.
To prove that the left hand side equals the right hand side, we will show that
they count the same thing. The right hand side tells us how many subsets of
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cardinality k + 1 a set with n + 1 elements has (basic definition of binomial
coefficient). We will now show that the left hand side also counts subsets of
size k + 1 of an n + 1 element set. Let us select a specific element from an
n+ 1set. Let’s call it x. Either a subset of k + 1 elements will contain x, or
it will not. These possibilities are disjoint. If we want to select a subset that

does not contain x, then there are

(
n

k + 1

)
ways to do this (i.e., without

x set has n elements, and we want to select k+ 1 of them). If we do want to
include x into our subset, then we need to select only k elements in addition
to x, again from the remaining n elements. By addition principle, there are(
n
k

)
+

(
n

k + 1

)
ways to choose k + 1 subsets of n+ 1 elements, and the

proof is complete.
2. Pascal’s identity, algebraic proof.(

n
k

)
+

(
n

k + 1

)
=

(
n + 1
k + 1

)
.

n!

(n− k)!k!
+

n!

(n− k − 1)!(k + 1)!
=

(n + 1)!

(n+ 1− k − 1)!(k + 1)!

n!

(n− k − 1)!(n− k)k!
+

n!

(n− k − 1)!k!(k + 1)
=

(n+ 1)n!

(n− k − 1)!(n− k)(k + 1)k!

We can now cancel appropriate terms on the left and right hand side, to
obtain

1

(n− k)
+

1

(k + 1)
=

(n + 1)

(n− k)(k + 1)

Now left and right hand sides are obviously identical (putting the left hand
side to a common denominator gives the right hand side), and the proof is
complete.
3. Pascal’s identity, inductive proof.
The induction is based on k. Let’s start by proving the base case k = 1.(

n
1

)
+

(
n
2

)
=

(
n+ 1

2

)
,

n+
n(n− 1)

2
=

(n+ 1)n

2
.
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By finding the common denominator for the left hand side, we see that left
and right hand sides are identical and therefor the base case is true. Let us
suppose that (inductive hypothesis)(

n
k − 1

)
+

(
n
k

)
=

(
n+ 1
k

)

holds. From the hypothesis, we find that(
n
k

)
=

(
n+ 1
k

)
−
(

n
k − 1

)
(∗).

Now we want to prove (inductive step)(
n
k

)
+

(
n

k + 1

)
=

(
n + 1
k + 1

)
.

Let us use (∗) on

(
n

k + 1

)
and substitute the result into the last equation.

We get (
n
k

)
+

(
n

k + 1

)
=

(
n
k

)
+

(
n + 1
k + 1

)
−
(
n
k

)
.

Cancellation of appropriate terms leads to the desired result.

2.6 Linear First Order Recurrences

The reader is expected to know already how to solve the simplest recurence
relations. Our interest now is a bit different - we want asymptotic information
from recursion. We will limit the discussion at this time to linear recurrences
with ”almost constant” coeficients. In other words, we will look at, except
for initial conditions, at

an = c1(n)an−1 + c2(n)an−2 + · · ·+ ck(n)an−k (∗)

where the functions ci(n) are n early constant. If ci(n) is nearly equal to Ci,
then the solution to

An = C1An−1 + C2An−2 + · · ·+ CkAn−k (∗∗)
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with initial conditions should be reasonably close to the sequence an. What
can be said about the solution to the last equation? Without initial condi-
tions not much can be said with certanty, but the following is usually true:
Principle 1. Let r be the largest root of the equation

rk = C1r
k−1 + C2r

k−2 + · · ·+ Ckr
0.

If this root occurs with multiplicity m, then there is usually a constant A
such that solution to (∗∗) that satisfies our unspecified initial conditions is
asymptotic to Anm−1rn.

This principle gives much less accurate results than the use of generating
functions or partial fractions, but generally requires much less work and gives
an idea as to what to expect for (∗).
Principle 2. Suppose that ci(n) → Ci as n → ∞ and that at least one Ci
is nonzero. Let r be the largest root of (∗∗). Then rn is probably a fairly
reasonable crude approximation to the solution an of (∗) that satisfy our
unspecified initial conditions. Usually

lim
n→∞

(cn)
1
n = r.

Example. Involutions.
Let an be the number of permutations of {1,2, . . . , n} which are involutions,
that is, no cycle lengths exceed two. Thus a recurrence relation for involutions
is simple: either n is in a cycle with itself or it is in a cycle with one of the
remaining n− 1 elements. Thus

an = an−1 + (n− 1)an−2,

with some appropriate initial conditions. The coeficients of this recursion are
not almost constant, but there is a trick that works whenever coefficients are
polynomials in n. Let bn = an

(n!)d
, where d is to be determined.Dividing our

recursion by (n!)d, we obtain

bn =
1

nd
bn−1 +

n− 1

(n2 − n)d
bn−2.

Now, if d < 1
2
, the last coefficient is unbounded, if d > 1

2
, both coefficients

on the right approach zero. With d = 1
2
, the first coefficient approaches zero,
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while the second approaches 1. Therefore, we are led to consider the recursion
bn = bn−2 and hence the roots of the polynomial r2 = 1. Since the largest
root is 1, we expect bn to approach 1. Thus, (n!)

1
2 is a rough approximation

to an. Factorial can be eliminated by using Stirling’s formula. Since our
approximation is so crude, we can ignore factors like

√
2πn and simply say

that an probably grows roughly like (n
e
)
n
2 .
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3 Tools of the trade - continued

The theory of algorithms has undergone an extraordinarily vigorous devel-
opment in the last 20 years, and probability theory has emerged as one of
its most vital partners. The aim of this section is to provide basic tools
from probability theory, specialy those frequently used in the analysis of
algorithms. The selection in this section is by no means comperhensive, in-
terested reader is refered to some of excellent introductions in probability
theory [?], [?].

3.1 Notion of Probability

Even though we intuitively connect statements such as ”this compendium will
probably be a success” with probability, we will be concerned with much more
idealized model of a particular conceptual experiment, with a well defined
set of possible outcomes (sample space). We will imagine the experiment
performed a great number of times. An event A is one of possible outcomes
of the experiment. Then the meaning of the sentence event A occurs with
probability 0.6 is that, in a long run, A is expected to appear sixty times out
of a hundred. If A appears exactly k times out of n times the experiment has
been performed, k

n
if called a relative frequency of the event A. Thus relative

frequencies of events are expected to fluctuate about some fixed number that
is called the probability of event.

Perhaps you saw this fraction k
n

before and took it as a definition of prob-
ability? It indeed coincides with probability in a special case when all events
are equaly likely, i.e. when we have classical probability algebras. In the case
of classical probability algebras , probabilities can be determined by combi-
natorial methods.
Example. A person having N keys in his pocket wishes to open his appart-
ment. he takes one key after another from his pocket and triies to open the
door. What is the probability that he will find the right key precisely at k-th
trial?
Suppose that the N ! possible sequences of keys are all equaly likely (have the
same probability). The answer is then extreemly simple: there are exactely
(N − 1)! permutations in which certain key allways occupies the k-th posi-

tion. The probability in question is therefore (N−1)!
N !

= 1
N

. The situation, of
course, is not so simple if keys are on a ring or can be tried more than once.
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Example. An urn contains M red and N −M white balls. Balls are drawn
from the urn one after the other without replacement. What is the proba-
bility of obtaining the first red ball at the k-th drawing?
In order to answer the question, we must know what our sample space and
events are. Since balls are drawn in order, we are speaking about permuta-
tions. We are interested in finding how many of N ! permutations have k− 1
white balls, followed by a red ball at the k-th position. The first k − 1 balls

can be choosen in

(
N −M
k − 1

)
ways from N −M white balls; furthermore,

these can be arranged in (k − 1)! ways. The red ball for k-th position can
be choosen in M ways. The remaining positions can be arranged in (N − k)!
ways. Hence, the answer is

Pk =
1

N !

(
N −M
k − 1

)
(k − 1)!M(N − k)!.

(Note: previous example is a special case of this with M = 1.)

Example. An urn contains N balls, of which M ≥ 1 are red and the rest is
white. From the urn n balls are drawn. What is the probability of obtaining
k red balls and n− k white ones?
This question could have been worded differently. For example: in a serial
production of machine parts, a series of N parts contains M rejects. What is
the probability that b y taking a sample of n parts, this sample will contain
k rejects? The point here is that balls and urns are just convinient model for
great variety of ’real’ situations we use probability in.

A sample of n elements out of N elements can be choosen in

(
N
n

)
ways.

Suppose that every such combination is equaly likely. Then the probability

of every such combination is (

(
N
n

)
)−1. Therefore, we have only to count

how many combinations contain k rejects. There are

(
M
k

)
ways to choose

k elements from m elements and

(
N −M
n− k

)
ways for the rest. The answer

is thus

Pk =

(
M
k

)(
N −M
n− k

)
(

(
N
n

)
)−1.
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3.2 Kolmogorov Probability Spaces

So far we have given just the most intuitive notion of probability. It was
restricted to finite number of possible events. We are now going to give a
more formal definition of probability space, one that includes infinite number
of events. This definition is due to Kolmogorov and is therefore often refered
to as Kolmogorov probability theory.

We assume that algebra of sets is given, isomorphic to the algebra of
events dealt with. (In algebra of sets we talk about unions and intersections,
while in algebra of events about sums and products, i.e. the sum of two
events A + B is an event which occurs exactly when either A or B occurs,
the product AB is an event which occurs only if A and B occur.) We assume
further that this algebra contains not only the sum of two sets belonging to
it but also the sum of denumerably many sets belonging to algebra. Such
algebras are called σ-algebras or Borel algebras.

The following axioms are assumed in Kolmogorov theory:

• Let there be given a nonempty set Ω. The elements of Ω are said to be
elementary events and are denoted by ω.

• Let A be an algebra of sets of the subsets of Ω; the sets A of A are
called events.

• A is a σ-algebra, i.e.

Ak ∈ A (k = 1, 2, . . .)⇒
∞∑
k=1

Ak ∈ A.

From the above axioms it follows immediately that if Ak ∈ A, k = 1, 2, . . .,
then also

∏∞
k=1Ak ∈ A. The next three axioms deal with properties of

probabilities.

• To each element A of A is assigned a nonnegative real number P (A)
(sometimes pA), called the probability of the event A.

• P (Ω) = 1.

• If A1, . . . , An, . . . is a finite or denumerably infinite sequence of pairwise
disjoint sets belonging to A, then

P (A1 + A2 + . . .+ An + . . .) = P (A1) + P (A2) + . . .+ P (An) + . . .
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The last axiom is called σ-additivity of the set function P (A).
A σ-algebraA of subsets of a set Ω on which a set function P (A) is defined

such that all the above axioms are fullfiled will be called a probability space
in the sense of Kolmogorov and will be denoted by [Ω,A, P ].

Every finite probability algebra is a Kolmogorov probability space, since
an additive set function on a finite algebra of sets is trivially σ-additive.

Now, the last axiom is clearly not valid for events that are not mutualy
disjoint. Even though the following theorem can be stated in a more general
setting, we will use this simplest form:

Theorem 3.1 For any two events A1 and A2 the probability that either A1

or A2 or both occur is given by

P (A1 + A2) = P (A1) + P (A2)− P (A1A2)

3.3 Conditional Probabilities

We introduced the notion of probability by means of relative frequences.
Accordingly, in order to introduc e the notion of conditional probability, we
examine conditional relative frequences first. If an event B occurs exactely n
times in N trials and if among these n trials event A occurs k times together
with event B, then the quotient k

n
is called the conditional frequency (denoted

fA|B) of A with respect to condition B. If fB denotes relative frequency of
event B in the whole sequence of trials (fB = n

N
), and fAB denotes the

relative frequency of both events appearing together (fAB = k
N

), then

fA|B =
fAB
fB

.

Since fAB fluctuates around P (AB) and fB fluctuates around P (B), then
fA|B fluctuates around

P (A|B) =
P (AB)

P (B)
, given P (B) > 0.

P (A|B) is called the conditional probability of the event A with respect
to the condition B.

Example. Four balls are placed successively into four cells, all 44 arrange-
ments being equally probable. Given that the first two balls are in different
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cells (event B), what is the probability that one cell contains exactly three
balls (event A)? Given event B, it is easy to see that event A can occur in
exactly two ways, and therefore P (A|B) = 2

42 . (It is easy to verify directly
that events B and AB contain 4 · 3 · 42 and 4 · 3 · 2 points.)

Example. Consider families with exactly two children. Letting b and g
stand for boy and girl respectively, first letter denoting the older child. There
are four possibilities: bb, bg, gb, gg. Those are our sample points, each hav-
ing probability 1

4
. Given that a family has a boy (event B), what is the

probability that both children are boys (event A)? The event AB means bb,
while B means bb, bg, gb. Therefore, the answer is 1

3
. However, most people

expect the answer to be 1
2
. Why? 1

2
is the correct answer to a similar ques-

tion, namely: a boy is choosen at random and found to come from a family
with two children; what is the probability that the second child is a male?
Now, what is the difference between these two formulations of a question?
The difference is that in the latter formulation the event B consist of only
two sample points, that is bb and bg.

From the mathematical point of view the conditional probability can be con-
sidered as a new probability measure. Indeed, let Ω be an arbitrary set, A
a σ algebra, P a probability measure (i.e. a nonnegative, completely additive
set function satisfying P (Ω) = 1), B a fixed element ofA such that P (B) > 0.
Then P (A|B) is a probability measure on A as well, and [Ω,A,P(A|B)] is
again a Kolmogorov probability space.

3.4 The Independence of Events

Generally, the conditional probability P (A|B) is different from P (A). If,
however, it is not, i.e. if P (A|B) = P (A) then we say that A is independent
of B. If A is independent of B, then B is also independent of A. Indeed
from the definition of conditional probability it follows that

P (B|A) =
P (A|B)P (B)

P (A)
.

This equation and independence of A (of B) imediately implies that

P (B|A) = P (B).
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Thus we can say that events A and B are independent of each other. It is
easy to see that if A and B are independent,

P (AB) = P (A)P (B).



The complete independence of more than three events is defined similarly.
The events A1, A2, . . . , An are said to be completely independent if for
any k = 2, 3, . . . , n the relation

P (Ai1Ai2 . . . Aik = P (Ai1)P (Ai2) . . . P (Aik)

is valid for any combination (i1, i2, . . . ik) from the numbers 1, 2, . . . , n. This
equation represents 2n−n−1 conditions (since any combination of k elements

out of n can be choosen in

(
n
k

)
, then summing over all k gives 2n but we

have overcounted for

(
n
0

)
and

(
n
1

)
, therefore we subtract the last two

terms from the sum).

3.5 Probability Distributions

With respect to finite probability algebras, we can define a concept of com-
plete system of events as follows: a system A1, A2, . . . , An is a complete
system of events if the relations

AiAj = 0 for i 6= j and A1 + A2 + . . .+ An = Ω

are valid, with all Ai 6= 0 for all i = 1, 2, . . . , n.
This definition can be extended to the arbitrary probability space in the

following manner: a finite or denumerably infinite system of events {An}
(An ∈ A, \ = ∞,∈, . . .) is said to be complete (in the wider sense), if for
for i 6= j AiAj = 0 and if occurence of the event An is almost sure i.e. if

P (
∑
n

An) =
∑
n

P (An) = 1.

Thus, this time instead of A1 +A2 + . . . = Ω we only require that P (Ω′) = 0
holds, where Ω′ =

∑
nAn ⊂ Ω.

A sequence of probabilities of a complete system of events will be called
a probability distribution.
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4 Probabilistic Method

The probabilistic method has recently been developed intensively. One of
the major reasons for this development is the increasingly important role of
randomness in theoretical computer science. The basic probabilistic method
can be described as follows: in order to prove the existence of a combinatorial
structure with certain properties, we construct an appropriate probability
space and show that a randomly chosen element in this space has the desired
properties with positive probability. We will illustrate the method on a simple
example.

Example. A Ramsey number R(k, l) is the smallest integer n such that
in any two-coloring of the edges of a complete graph on n vertices Kn by red
and blue, there is either a red Kk (i.e. a complete subgraph on k vertices,
all of whose edges are colored red) or a blue Kl. Ramsey (1939) showed that
R(k, l) is finite for any two integers k and l. Let us obtain a lower bound for
the diagonal Ramsey numbers R(k, k).

Theorem 4.1 If

(
n
k

)
2

1−

(
k
2

)
<< 1, then R(k, k) > 2

k
2 for all k ≥ 3.

Proof. Consider a random two-coloring of the edges of Kn obtained by
coloring each edge independently either red or blue, where each color is equaly
likely. For any fixed set R of k vertices, let AR denote the event that the
induced subgraph of Kn on R is monochromatic (all edges of the same color).

Clearly, Pr(AR) = 2
1−

(
k
2

)
. Since there are

(
n
k

)
choices for R, the prob-

ability that at least one of the events occurs is at most

(
n
k

)
2

1−

(
k
2

)
<< 1.

Thus, with positive probability, no event AR occurs and there is a two col-
oring of Kn without monochromatic Kk, i.e. R(k, k) ≥ n.

Note that if k ≥ 3 and n = b2 k
2 c, then

(
n
k

)
2

1−

(
k
2

)
<

21+ k
2

k!

nk

2
k2

2

< 1
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and hence R(k, k) > 2
k
2 for all k ≥ 3.

4.1 Random Graphs

We give the three most common models for random graphs. In all cases,
graph G has n vertices.

• Dynamic. Imagine G to have no edges at time 0. At each time unit a
randomly choosen edge is added to G. Then G evolves from empty to
full.

• Static. Given e , let G be choosen randomly from among all graphs
with e edges.

• Probabilistic. Given p, let the distribution ofG be defined by Pr[{i, j} ∈
G] = p for all i, j with these probabilities mutually independent (i.e.
flip the coin, head with probability p, to determine if each edge is in G).

When p = e(

(
n
2

)
)−1, the static and the probabilistic model are nearly

identical. We will work mostly with probabilistic model. The notation that
we use is G(n, p).

Definition 4.1 r(n) is called a treshold function for a graph theoretic
property A if

1. when p(n) << r(n), limn→∞ Pr[G(n, p) ` A] = 0

2. when p(n) >> r(n), limn→∞ Pr[G(n, p) ` A] = 1

or vice versa.

Here are some examples: Property A: graph is not planar has threshold
function p(n) = 1

n
. Property A: graph is connected has threshold function

p(n) = lnn
n

. Property A: graph contains a clique on k points has threshold
function p(n) = n−2/(k−1).
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A bipartite graph G = (U, V, E), |U | = |V | = n is an (α, β)-expander if
|N(X)| ≥ α|X| for all X ⊂ U, |X| ≤ β|U | and the same holds for subsets

of V .
Expanders are example of so called quasi-random graphs, i.e. graphs

that have some properties of random graphs. They are, as we will see in
[?] a good tool to use when an explicit construction of, for example, parallel
sorting network, is desired.
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