Lectures

  • Lecture 1 (slides / handout)
  • Lecture 2 (slides / handout)
    • Chapter 3: sections 3.2, 3.3
    • Chapter 7: sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.7
  • Lecture 3 (slides / handout)
    • Chapter 3: sections 3.4, 3.5
    • Chapter 7: sections 7.10, 7.11
  • Lecture 4 (slides / handout)
    • Chapter 3: sections 3.4, 3.6, 3.8
    • Chapter 4: subsection 4.4.4
    • Zou (2006)
  • Lecture 5 (slides / handout)
  • Lecture 6 (slides / handout)
    • Chapter 5: sections 5.1, 5.2, 5.4, 5.5, 5.7
  • Lecture 7 (slides / handout)
    • Chapter 8: section 8.7
    • Chapter 9: sections 9.1, 9.2
  • Lecture 8 (slides / handout)
    • Chapter 13: section 13.4
    • Chapter 15: sections 15.1, 15.2, 15.3, 15.4
  • Lecture 9 (slides / handout / notes)
    • Chapter 10: sections 10.1, 10.2, 10.3, 10.4, 10.5, 10.10, 10.12.1
  • Lecture 10 (slides / handout)
  • Lecture 11 (slides / handout)
    • Chapter 16: sections 16.1, 16.2
    • Chapter 18: sections 18.1, 18.3.5, 18.6
  • Lecture 12 by Odd Kolbj?rnsen (slides)
  • Lecture 13
    • notes on multiple tests corrections;
    • overview of the course's contents through a Kahoot game.
  • Lecture 14 (PhD presentations)
    • Variable selection in ultra-high dimensional mixed models
    • Machine learning of coarse-grained molecular dynamics force fields
    • Interpretable factor models of single-cell RNA-Seq via variational autoencoders
    • Finding new medication strategies for blood cancer patients
    • Example of data analysis in high energy physics
  • Lecture 15 (PhD presentations)
    • Hybrid particle-field theory for biological macromolecules: Advances in computational methodology
    • Boosting multi-step autoregressive forecasts

 

 

 

Published Aug. 13, 2020 4:40 PM - Last modified Nov. 8, 2021 3:57 PM