ECON3120/4120 Mathematics 2: postponed exam 2025-01-15

(4 hours. Support material: "Rules and formulas" attachment and Inspera's simple calculator.)

For the entire problem set:

- You are required to state reasons for all your answers.
- You are permitted to use any information stated in an earlier enumerated item (e.g. "(a)") to solve a later one (e.g. "(c)"), regardless of whether you managed to answer the former. A later item does not necessarily require answers from or information given in a previous one.

Suggested weighting: Problem 4 and each letter-enumerated problem ("(a)", "(b)", ...) count equal.

		t	0	0	t	3	0	0	-6		0	
Problem 1		0	2	1	0	0	-2	-2	0		-1	
		0	1	-1	0 , 101 =	0	-2	4	0		2	
		t	0	0	1	-6	0	0	6		-3	

real constant t. Throughout this problem, the prime symbol () denotes matrix transpose.

- (a) Calculate the matrix product(s) that is/are well-defined among the following, and identify any which isn't/aren't well-defined:
 - i) bb ii) b b iii) Mb iv) MA_t
- (b) There is some number s and some number t such that $(s\mathbf{A}_t)^{-1} = \mathbf{M}$. Find s and t.
- (c) For each of A_t , M and b: Calculate the determinant, or identify it as not well-defined.
- (d) In this part, consider equation systems $A_t x = b$ (where x is the unknown):
 - Solve the system for t = t found in part (b). You are allowed to express the solution in terms of t and the number s (also from (b)) whether or not you found those numbers, but your solution must be calculated out.
 - Find some $t = t_0$ such that no solution exists.

Problem 2 Let $f(x) = 1 - e^{x^{1/3}}$ be defined for all real x. Note, $x^{1/3}$ has the same sign as x.

(a) Show that $\lim_{x \to +} \frac{f(x)}{1+x} = -$ and find $\lim_{x \to -} \frac{f(x)}{1+x}$.

For each constant c > 0, let $h(x) = f(x) + c \cdot (1 + x)$. Note that h(0) = 1 + c.

- (b) Show that *h* has a zero x₁ < 0 and a zero x₂ > 0.
 (You are not required to find them, nor to take a stand on whether there are more.)
- (c) Each of the zeroes x_1 , x_2 depends on c. Find expressions for $\frac{dx_1}{dc}$ and $\frac{dx_2}{dc}$.

Problem 3 Let $Q(x, y) = x^{1/4}y^{1/2}$, let $R(x, z) = x^{1/4}z^{1/2}$ and for each constant *a* (0, 1), let $f(x, y, z) = 4(1 - a) \cdot Q(x, y) + 4a \cdot R(x, z)$.

(a) Which of the functions Q, R and f is/are homogeneous?

Let now p, w and b be positive constants, and consider the problem

max
$$f(x, y, z)$$
 subject to $x + py + wz = b$ (P)

Observe that any admissible point with x = 0 is «worst possible», it yields f = 0.

(b) Can we tell, without looking into the Lagrange conditions, whether there must be a point that satisfies them?

Hint: Careful about the logic!

- (c) Show that if $a = \frac{w}{p+w}$ (so that $1 a = \frac{p}{p+w}$), then an optimal point must have y = z. (Recall that x must be = 0 in optimum.)
- (d) Change *a* from $\frac{W}{p+W}$ to $\frac{W}{p+W} + h$, and let *V* be the change in optimal value. Find $\lim_{h \to 0} \frac{V}{h}$.

Problem 4 (expected to count as one letter-enumerated item)

Let H > 0 be a constant. Suppose that the state variable evolves according to $x_{t+1} = x_t \cdot (1 - c_t)$ and consider the dynamic programming problem

$$v_{t_0}(x_{t_0}) = \max_{c_t (0,1)} 2 \overline{c_{t_0} x_{t_0}} + 2 \overline{c_{t_0+1} x_{t_0+1}} + \dots + 2 \overline{c_{T-1} x_{T-1}} + 2H \overline{x_T}$$

It is a fact that v_{T-1} is of the form $h_1 \cdot \overline{x_{T-1}}$ for some positive constant h_1 .

Show that v_{7-2} is of the form $h_2 \cdot \overline{x_{7-2}}$ for some positive constant h_2 . (You do not have to calculate h_2 as long as you establish that it is a positive constant.)

Problem 5

- (a) Among the following four integrals, two are «doable by hand in reasonable time»:
 - i) $\int_{0}^{1} y^{2024} \cdot e^{y} \, dy$ ii) $\int_{1}^{0} y \cdot (e^{y})^{2024} \, dy$ iii) $y \cdot (\ln y)^{2024} \, dy$ iv) $y^{2024} \cdot \ln y \, dy$

It is part of your task to identify which ones can be done reasonably fast:

- Pick one of the integrals and calculate it.
- Explain which of the other three takes fewer operations and less time than the two remaining, *and why.*
- (b) Consider the di erential equation $\dot{x} + 2tx = -t$.
 - Find a *constant* particular solution $x(t) = \bar{p}$.
 - Find the general solution.

(End of problem set. Attachment: Rules and formulas.)