
ECON3120/4120 Mathematics 2 2024: on the 2025-05-15 exam
See the guideline for the December exam. Feedback from an external grader was that that
problem set was too long and too easy – but the length dominating, thus the grading scale was
adjusted downwards. Although this set was intended to be about the same overall – indicating,
the same grading scale could be used – it was intended to be a bit shorter and not so easy. Some
items mentioned:

• Problem 1. Linear algebra typically scores higher than average, and with 4 parts it carries
more weight than at the ordinary exam. However, part (b) is a question type that this
year seems not to be well understood: you got a solution candidate – and just verify that
the equation(s) hold true. That could be done very quickly, but it is not to say that it is
in practice much easier than a problem set average.

• Problem 2. exp(x1/3) is not an exponential function of x. Anticipated: weaker candidates
will claim it is – on top of having to distinguish between growth and decay.
As goes problem 2(c), then one would expect this to be a lot easier than finding derivatives
when two functions are determined by two equations (cf. the bad scores on ordinary exam
part 1(b)); after all, this is «Math 1», slope of level curves. However, experience is that
such problems do not score well on a Math 2 exam. It is definitely quicker done, to those
who know it.

Considering Problems 1 and 2 part (c) compared with (equal weight) ordinary exam’s problems
1 and 2, the likely single factor that makes difference in difficulty, is the absence of ordinary
set’s problem 1(a), which was easy and scored well. Then on the other hand, the new 1 and 2c
should be possible to do faster despite having two 4 × 4 matrix products.

• Problem 3:
– Part (b) will likely reveal those candidates who merely namedrop the extreme value

theorem without checking its applicability. On the contrary: Evidence from the
ordinary exam indicates that the candidates do not know what «Lagrange conditions»
are, and so a badly answered question was removed.

– Part (d) requires not only the knowledge of the envelope theorem, but also the Math
1 knowledge of what the derivative is.

• Problem 4: This is one of the prototypical dynamic programming problems covered in
class, and about as short as such a problem could get. Although it requires something in
the vein of the ordinary exam’s Problem 4(b) (which scored lesser than (a)), the overall
weight on dynamic programming is now only half of at the ordinary exam, and so

Overall, despite Problem 3(a) being easy, problems 3 and 4 might be harder than on the ordinary
exam. Problem 5 is arguably easier (but likely not so easy as when 2ab are factored in).

• Problem 5: Part (a) has the prototypical integration by parts problems: polynomial times
exp, and power times log. Unlike the ordinary, there is no (ln z)2. If they do not know
that yNe(ay) requires integration by parts, and more if N is big than if N = 1, then they
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haven’t learned the basics of the method. The «explain» part takes very little time to
those who know; those who will have to attempt the calculations, might need more time,
but this isn’t witchcraft.
Problem 5 part (b): The ordinary exam asked to find particular solutions of the form
q2−t + h to both a difference equation and a differential equation. Here, there is only one
and q = 0. Then the ordinary exam had a question on solving an initial value problem,
whereas this one asks for a general solution.
The «hard» part of this one is that they «have to» do what they are asked. Merely
trusting the formula will lead to an integral that requries substitution, which is no longer
taught. However, getting out a particular solution – or just calling it «p̄»! – will get out
Cet2 + p̄ immediately.

To follow: Problems restated with solution sketches.

Problem 1 Let At =


t 0 0 t
0 2 1 0
0 1 −1 0
t 0 0 1

, M =


3 0 0 −6
0 −2 −2 0
0 −2 4 0

−6 0 0 6

 and b =


0

−1
2

−3

, for each

real constant t. Throughout this problem, the prime symbol (′) denotes matrix transpose.

(a) Calculate the matrix product(s) that is/are well-defined among the following, and identify
any which isn’t/aren’t well-defined:
i) bb ii) b′ b iii) Mb iv) MAt

(b) There is some number s and some number t∗ such that (sAt∗)−1 = M.
Find s and t∗.

(c) For each of At, M and b: Calculate the determinant, or identify it as not well-defined.

(d) In this part, consider equation systems Atx = b (where x is the unknown):
• Solve the system for t = t∗ found in part (b). You are allowed to express the solution

in terms of t∗ and the number s (also from (b)) whether or not you found those
numbers, but your solution must be calculated out.

• Find some t = t0 such that no solution exists.

Solution sketches with remarks:

(a) bb undefined, since b not square.
b′b = 0 + (−1)2 + 22 + (−3)2 = 14 (or strictly speaking «(14)» but we don’t care to
distinguish a one-by-one from its element.)

Mb =


0 + 0 + 0 + (−6) · (−3)

0 + (−2) · (−1) + (−2) · 2 + 0
0 + (−2) · (−1) + 4 · 2 + 0

0 + 0 + 0 + 6 · (−3)

 =


18
−2
10

−18
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MAt =


3 0 0 −6
0 −2 −2 0
0 −2 4 0

−6 0 0 6




t 0 0 t
0 2 1 0
0 1 −1 0
t 0 0 1

 (in that order!), equals


3 · t + 0 + 0 + (−6) · t 0 + 0 + 0 + 0 0 + 0 + 0 + 0 3t + 0 + 0 + (−6)

0 + 0 + 0 + 0 0 + (−4) + (−2) + 0 0 − 2 + 2 + 0 0 + 0 + 0 + 0
0 + 0 + 0 + 0 0 + 0 + 0 + 0 0 − 2 − 4 + 0 0 + 0 + 0 + 0

−6t + 0 + 0 + 6t 0 + 0 + 0 + 0 0 + 0 + 0 + 0 −6t + 0 + 0 + 6



=


−3t 0 0 3t − 6

0 −6 0 0
0 0 −6 0
0 0 0 −6t + 6


(b) It suffices to find s and t∗ such that sI = MAt∗ . Put t∗ = 2 to get a diagonal matrix; then

observe that MA2 = −6I, so s = −6.

(c) b has no determinant, it is not square.
Cofactor expansion along the first row and then along the last row, will yield:

|M| = 3

∣∣∣∣∣∣∣
−2 −2 0
−2 4 0
0 0 6

∣∣∣∣∣∣∣ − (−6)

∣∣∣∣∣∣∣
0 −2 −2
0 −2 4

−6 0 0

∣∣∣∣∣∣∣ = 18
∣∣∣∣∣−2 −2
−2 4

∣∣∣∣∣ − 36
∣∣∣∣∣−2 −2
−2 4

∣∣∣∣∣, same 2 × 2

determinants which do equal −8 − 4 = −12 leading us to −18 · (−12) 216
For |At| we could do likewise, but it does not hurt to use that |MAt| equals 3t · 36 · (6t − 6)
but at the same time = |M| |At| = (18 · 12)|At| so |At| = 3t·36·(6t−6)

18·12 = 3t(t − 1).

(d) Atx = b:
• The problem text of part (b) tells us that s and t∗ exist, and using that we can get

as far as At∗ = 1
s
M, so x = 1

s
Mb = 1

s

(
18, −2, 10, −18

)′
from part (a).

With s = −6 as calculated: −1
6


18
−2
10

−18

 = 1
3


−9
1

−5
9

 (or if you like,


−3
1/3

−5/3
3

).

• t0 must necessarily make the determinant vanish, so from (a) it must be either 0 or
1. t = 0 yields that the first equation says 0 = 0 and is superfluous, so we might
have better hope∗ trying t = 1. In that case, the first row becomes (1 0 0 1 | 0) and
the last row becomes (1 0 0 1 | − 3) leading to the contradiction 0 = −3. Thus,
no solution for t = t0 = 1.

∗and it so happens that t = 0 yields several solutions: x1 does not enter and is free, x4 only enters in the fourth
equation x4 = −3, and the equation for (x2, x3)′ has invertible coefficient matrix.
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Problem 2 Let f(x) = 1 − ex1/3 be defined for all real x. Note, x1/3 has the same sign as x.

(a) Show that lim
x→+∞

f(x)
1 + x

= −∞ and find lim
x→−∞

f(x)
1 + x

.

For each constant c > 0, let h(x) = f(x) + c · (1 + x). Note that h(0) = 1 + c.

(b) Show that h has a zero x1 < 0 and a zero x2 > 0.
(You are not required to find them, nor to take a stand on whether there are more.)

(c) Each of the zeroes x1, x2 depends on c. Find expressions for dx1

dc
and dx2

dc
.

Solution sketches with remarks:

(a) x → −∞ leads to exp(x−1/3) → e−∞ = 0, so lim
x→−∞

f(x)
1 + x

= 1 − 0
−∞

= 0.

For the limit as x → +∞, we can of course let x1/3 = y and consider limy→+∞
1−ey

1+y3 =
0 − limy→+∞

ey

1+y3 = 0 − ∞ now we got an exponential numerator and a polynomial
denominator. But sans that trick: fraction → −«∞/∞» and l’Hôpital’s rule yields

0 − lim
x→+∞

ex1/3 · 1
3x−2/3

1 = −1
3 lim

x→+∞

ex1/3

x2/3 , again infinity over infinity. l’Hôpital again:

−1
3 lim

x→+∞

ex1/3 · 1
3x−2/3

2
3x−1/3 which = −1

6 lim
x→+∞

ex1/3

x1/3 , and again infinity over infinity. Now both

numerator and denominator depend solely on x1/3, and its derivative 1
3x−2/3 cancels:

−1
6 lim

x→+∞

ex1/3 · 1
3x−2/3

1 · 1
3x−2/3 = −1

6 lim
x→+∞

ex1/3 = −∞.

(b) h(0) = 1 + c > 0. h is continuous, and if we can show that h < 0 somewhere in (−∞, 0)
then the intermediate value theorem will ensure it hits zero for some x1 < 0; and, if h < 0
somewhere in (0, ∞) then the intermediate value theorem will ensure it hits zero for some
x2 > 0.

• As x → −∞, f(x) → 1 − 0 = 1 and h(x) → 1 + c + c · (−∞) = −∞ since c > 0.
Therefore, h becomes negative for some x < 0, and x1 exists.

• Consider lim
x→+∞

h(x)
1 + x

= c + lim
x→+∞

f(x)
1 + x

= −∞, so h becomes negative for some
x > 0, thus x2 exists.

(c) For i = 1, 2 we have f(xi)+(1+xi)·c = 0. Total derivative wrt. c: (1+xi)+
(
f ′(xi)+c

)
· dxi

dc
=

0, so for both x1 and x2 we have the expression

dxi

dc
= − 1 + xi

c + f ′(xi)
= − 1 + xi

c − 1
3x

−2/3
i exp(x1/3

i )

(Of course it is possible to replace ex1/3 by 1 + (1 + xi)c.)
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Problem 3 Let Q(x, y) = x1/4y1/2, let R(x, z) = x1/4z1/2 and for each constant a ∈ (0, 1),
let f(x, y, z) = 4(1 − a) · Q(x, y) + 4a · R(x, z).

(a) Which of the functions Q, R and f is/are homogeneous?

Let now p, w and b be positive constants, and consider the problem

max f(x, y, z) subject to x + py + wz = b (P)

Observe that any admissible point with x = 0 is «worst possible», it yields f = 0.

(b) Can we tell, without looking into the Lagrange conditions, whether there must be a point
that satisfies them?
Hint: Careful about the logic!

(c) Show that if a = w

p + w
(so that 1 − a = p

p + w
), then an optimal point must have y = z.

(Recall that x must be ̸= 0 in optimum.)

(d) Change a from w

p + w
to w

p + w
+ h, and let ∆V be the change in optimal value.

Find lim
h→0

∆V

h
.

Solution sketches with remarks:

(a) Q(tx, ty) = t1/4x1/4t1/2y1/2 = t3/4Q(x, y).
R(tx, tz) = t1/2x1/2t1/4z1/4 = t3/4R(x, z).
f(tx, ty, tz) = 4(1 − a)t3/4Q(x, y) + 4at3/4R(x, z) = t3/4f(x, y, z).
So all three are homogeneous (of the same degree 3/4).

(b) Remark: This is a difficult question to get to a strictly correct level, especially since we
are in three dimensions, and depending on argument: both an affirmative and a negative
answer could retrieve «at least very high» scores, the latter if they point out that a plane
is not bounded. Note that the extreme value theorem does not apply without considering
the domain of f ! Here is an argument that does consider it:
f is only defined where each variable is nonnegative. Because the coefficients 1, p, w are
all positive, we are restricted to a bounded set: x cannot be outside [0, b], y must be
∈ [0, b/p] and z ∈ [0, b/z]. The set is closed (the boundary is included, each variable can
be zero) and the function is continuous. The extreme value theorem grants existence.
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(c) Lagrange conditions (note: they are taken as necessary in Math 2) with a = w/(p + w):

x + py + wz = b (1)
p

p + w
x−3/4y1/2 + w

p + w
x−3/4z1/2 = λ (2)

p

p + w
· 2x1/4y−1/2 = pλ (3)

w

p + w
· 2x1/4z−1/2 = wλ (4)

Eliminate λ from (3) and w from (4), using that pw ̸= 0:

1
p + w

· 2x1/4y−1/2 = λ = 1
p + w

· 2x1/4z−1/2 (5)

Then x1/4y−1/2 = x1/4z−1/2, and since x ̸= 0 (in optimum – as noted, x = 0 yields worst
possible outcome f = 0), then y1/2 must equal z1/2 and thus y = z.

(d) Observe first that what is asked for, is the derivative wrt. a. By the envelope theorem we
can take the partial derivative first, and insert afterwards. Note that y = z can be invoked
without having attempted at solving part (c), as it was given in the problem text:
∂

∂a

[
4(1 − a)x1/4y1/2 + 4ax1/4z1/2 − λ(x + py + wz − b)

]
= −4x1/4y1/2 + 4x1/4z1/2 =

4x1/4(z1/2 − y1/2) is zero in optimum.

Problem 4 (expected to count as one letter-enumerated item)
Let H > 0 be a constant. Suppose that the state variable evolves according to xt+1 = xt · (1 − ct)
and consider the dynamic programming problem

vt0(xt0) = max
ct∈(0,1)

{
2√

ct0xt0 + 2√
ct0+1xt0+1 + . . . + 2√

cT −1xT −1 + 2H
√

xT

}
It is a fact that vT −1 is of the form h1 · √

xT −1 for some positive constant h1.
Show that vT −2 is of the form h2 · √

xT −2 for some positive constant h2.
(You do not have to calculate h2 as long as you establish that it is a positive constant.)

The following is a complete solution (since in this part of the course, they do not need to touch
upon the existence of optimum):

By the dynamic programming equation, vT −1(x) = maxc∈(0,1)
{
2
√

cx + h1

√
x(1 − c)

}
which

since
√

x ≥ 0, equals
√

x · max
c∈(0,1)

{
2
√

c + h1
√

1 − c
}

︸ ︷︷ ︸
call it h2

. And 2
√

c + h1
√

1 − c︸ ︷︷ ︸
>0, sum of positives

because h1 > 0.
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Problem 5
(a) Among the following four integrals, two are «doable by hand in reasonable time»:

i)
∫ 1

0
y2024 · ey dy ii)

∫ 0

1
y · (ey)2024 dy iii)

∫
y · (ln y)2024 dy iv)

∫
y2024 · ln y dy

It is part of your task to identify which ones can be done reasonably fast:
• Pick one of the integrals and calculate it.
• Explain which of the other three takes fewer operations and less time than the two

remaining, and why.

(b) Consider the differential equation ẋ + 2t x = −t.
• Find a constant particular solution x(t) = p̄.
• Find the general solution.

Solution sketches with remarks:

(a) ii) requires only one integration by parts (differentiating y) while i) requires 2024 such
operations. iii) requires only one integration by parts (differentiating ln y) while iv) requires
2024 (successive differentiations of (ln y)n.)
Problem asks to do one of them. For this solution note, let’s do both.
ii) (Alternatively, do indefinite first. There is a reversal there from

∫ b
a = −

∫ a
b ):

∫ 0

1
ye2024y dy =

∣∣∣∣0
1

(
y

e2024y

2024
)

−
∫ 0

1
1 · e2024y

2024 dy

= 0 − e2024

2024 +
∣∣∣∣1
0

e2024y

(2024)2

= e2024
( 1

20242 − 1
2024

)
+ 1

20242

= 1
20242

[
1 − 2023e2024

]

iii) ∫
yr · ln y dy = 1

r + 1yr+1 ln y −
∫ 1

r + 1yr+1 · 1
y

dy

= 1
r + 1yr+1 ln y − 1

(r + 1)2 yr+1 + C

holds for r ̸= −1. With r = 2024 we get C + y2025

2025

(
ln y − 1

2025

)
(b) Constant particular: Insert p̄ (whose derivative is 0) to get 0 + 2tp̄ = −t and p̄ = −1/2.

General solution: (t2)′ = 2t yields Cet2 + p̄ = Cet2 − 1/2.
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