IN4050 – Introduction to Artificial Intelligence and Machine Learning
Course description
Schedule, syllabus and examination date
Course content
This course gives a basic introduction to machine learning (ML) and artificial intelligence (AI). Through an algorithmic approach, the students are given a practical understanding of the methods being taught, in particular through making their own implementations of several of the methods. The course covers supervised classification based on e.g., artificial neural networks (deep learning), as well as unsupervised learning (clustering), regression, optimization (evolutionary algorithms and other search methods) and reinforcement learning, in addition to design of experiments and evaluation. Students also receive an introduction to philosophical fundamental problems and ethical questions related to ML/AI, as well as the field's history.
Learning outcome
After taking the course, you will:
- have good insight into the main methods used in machine learning (ML) and artificial intelligence (AI)
- have knowledge of the historical development of the field and challenges by making more general intelligent systems
- be able to consider the pros and cons when choosing ML / AI methods for different applications and problems
- be able to design and conduct experiments using the methods, with emphasis on evaluation and comparison
- be able to implement algorithms for selected methods and combine them into hybrid systems
- get experience with different ways of using a data set for training and testing
- have knowledge of basic philosophical and ethical issues related to the development and application of ML/AI
Admission to the course
Students who are admitted to study programmes at UiO must each semester register which courses and exams they wish to sign up for?in Studentweb.
If you are not already enrolled as a student at UiO, please see our information about?admission requirements and procedures.
IN3050 and IN4050?will be assessed together in regards to?the number of admissions, with?priority given as following:
- Bachelor's students?in the study programmes?Informatics:?Robotics and Intelligent Systems?or?Informatics:?Language Technology
- Master's students in the study programme?Informatics: Robotics and Intelligent Systems(programme option; Robotics and Intelligent Systems)?or?Informatics:?Language Technology
- Master's students in the study programme?Computational Science (programme option;?Bioinformatics)?
- Master's students at the Deparment of Informatics
- Bachelor's students at the Department of Informatics
- Others
Recommended previous knowledge
Some experience with programming, preferably including the course IN2010 – Algorithms and Data Structures.
Overlapping courses
- 10 credits overlap with IN3050 – Introduction to Artificial Intelligence and Machine Learning.
- 7 credits overlap with INF3490 – Biologically inspired computing (continued).
- 7 credits overlap with INF4490 – Biologically Inspired Computing (continued).
Teaching
2 hours of lectures and 2 hours of exercises each week.
Completion of mandatory assignments that will be more extensive that for the ?main course? is compulsory. Read more about requirements for submission of assignments, group work and legal cooperation under guidelines for mandatory assignments.
Examination
The course has a?4 hour?written digital exam, but might get an oral exam?if the number of students is low.
All mandatory assignments must be approved to be allowed to take the exam.
It will also be counted as one of?your three?attempts to sit the exam for this course, if you sit the exam for one of the following courses: IN3050 – Introduction to Artificial Intelligence and Machine Learning, INF3490 – Biologically inspired computing (continued) and INF4490 – Biologically Inspired Computing (continued).
Examination support material
No examination support material is allowed.
Grading scale
Grades are awarded on a scale from A to F, where A is the best grade and F?is a fail. Read more about?the grading system.
Resit an examination
Students who can document a valid reason for absence from the regular examination are?offered a postponed examination at the beginning of the next semester.
Re-scheduled examinations are not offered to students who withdraw during, or did not pass the original examination.
More about examinations at UiO
- Use of sources and citations
- Special exam arrangements due to individual needs
- Withdrawal from an exam
- Illness at exams / postponed exams
- Explanation of grades and appeals
- Resitting an exam
- Cheating/attempted cheating
You will find further guides and resources at the web page on examinations at UiO.