Syllabus/achievement requirements

Syllabus

  1. The lecture notes (you can find them in the Schedule)
  2. A.E. Eiben and J.E. Smith: Introduction to Evolutionary Computing, 2nd printing, 2007. Springer. ISBN: 978-3-540-40184-1
    • ??Chapter 1 - Introduction (lecture 2)
    • Chapter 2 - What is an Evolutionary Algorithm? (lecture 2)
    • Chapter 3 - Genetic Algorithms (lecture 3)
    • Chapter 4 - Evolution Strategies (lecture 2)
    • Chapter 5 - Evolutionary Programming, sections 1, 3-8 (lecture 2)
    • Chapter 6 - Genetic Programming (lecture 2)
    • Chapter 9 - Multi-Modal Problems and Spatial Distribution (lecture 4)
    • Chapter 10 - Hybridisation with Other Techniques: Memetic algorithms (lecture 4)
    • Chapter 14 - Working with Evolutionary Algorithms (lecture 4)
  3.  S. Marshland: Machine learning: An Algorithmic Perspective. ISBN:978-1-4200-6718-7
    • ??Chapter 1 - Introduction (lecture 6)
    • Chapter 2 - Linear Discriminants (lecture 6)
    • Chapter 3 - The Multi-Layer Perceptron (lecture 7)
    • Chapter 5 - Support Vector Machines (lecture 8)
    • Chapter 7 - Decision by Committee: Ensemble Learning (lecture 8)
    • Chapter 9 - Unsupervised Learning (lecture 9)
    • Chapter 10 - Dimensionality Reduction, section 2 (lecture 8)
    • Chapter 11 - Optimisation and Search, sections 1, 4-6 (lecture 1)
    • Chapter 13 - Reinforcement Learning (lecture 10)
  4. On-line papers (Both are available for download when on the UiO network)
  5. On-line document (English translated excerpt from Chapter 6 in the book hva er KUNSTIG INTELLIGENS):

Supporting literature (not syllabus, in Norwegian)

Jim T?rresen: hva er KUNSTIG INTELLIGENS, 2013, Universitetsforlaget, ISBN: 9788215020211

Obligatory Mid-Term Exercises (each exercise is PASS/FAIL):

  1. Two exercises on evolutionary algorithm and machine learning.
  2. Students registered for INF4490 will be given additional excercises within area of the course.

 

Published Aug. 22, 2014 4:46 PM - Last modified Nov. 8, 2014 8:39 PM