PC-?velser uke 35
Denne uken skal vi pr?ve ut applikasjonen Truth Table Constructor: F?lg lenken, aksepter sertifikatet, og vent til en gr? knapp dukker opp til venstre, med teksten start truth table constructor. Dobbeltklikk her, og applikasjonen dukker opp etter en liten stund. Skriv for eksempel inn (A v (B & C)) -> (A v B) og trykk enter. Du f?r vite at dette er en tautologi, hvilket betyr at den er sann i alle mulige "scenarier", det vil si i hver linbje i sannhetsverditabellen.
1) Utforsk hjelp-menyen, som blant annet forteller hvordan input m? se ut. (Hvordan skriver du negasjon? Hva menes med contingency og contradiction, som i tillegg til tautologi kan dukke opp som beskrivelse av ulike utsagn?)
2) Skriv inn (A v (B & C)) -> (A v B). Er dette en tautologi? Hvis ikke, bruk sannhetsverditabellen til ? finne et mulig "scenario" der den ikke er sann.
3) Skriv inn noen uttrykk med mange utsagnsvariabler, og tell linjene. Hva er sammenhengen mellom antall variabler og antall linjer?
4) Generelt gjelder det at hvis vi har to (gjerne sammensatte) utsagn A og B, s? vil (A -> B) v?re en tautologi hvis og bare hvis B har T i alle linjene der A har T. Utforsk dette med eksempler, og forklar, ut fra oppf?rselen til konnketivet ->, hvorfor det m? v?re s?nn.
5) Vi sier gjerne at to utsagn er ekvivalente hvis de alltid har samme sannhetsverdi. Hvor mange forskjellige ikke-ekvivalente utsagn kan vi da skrive ved bare ? bruke utsagnsvariablene P og Q? Pr?v ? finne s? mange som mulig.
6) Ett av svarene til oppgaven over kan se slik ut: (P + Q) . Let i help-menyen etter en forklaring av hva dette er, finn sannhetsverditabellen for uttrykket, og pr?v ? finne et ekvivalent utsagn som bare inneholder konnektivene konjunksjon, disjunksjon og negasjon.
7) Pr?v ut biimplikasjon (P <-> Q), se at dette blir ekvivalent til (P -> Q) & (Q -> P). Hva er forholdet mellom <-> og + ? Pr?v ? finne (gjerne flere forskjellige!) utsagn bare skrevet med P, Q og en forekomst hver av biimplikasjon og negasjon, som er ekvivalente til (P + Q).