Pensum/l?ringskrav

John E. McMurry: Organic Chemistry, 9th Edition, 2016. Cengage Learning. ISBN: 978-1-305-08048-5.

Elektronisk utgave av l?reboka (e-l?rebok): Alle registrerte studenter vil ved oppm?te ved emnets start f? utdelt koder som gir FRI ADGANG til e-l?reboka og mye annet elektronisk kursmateriell knyttet til l?reboka!

Papirutgave av l?reboka: Denne er tilgjengelig p? Akademika bokhandel til normal pris. Mange foretrekker ? lese i papirutgaven fremfor e-utgaven.

Andre utgaver av l?reboka av samme forfatter b?r unng?s. De studenter som ikke f?lger denne anbefalingen gj?r dette helt p? eget ansvar og vil p?f?re seg selv vesentlig ekstraarbeide! Det er mye lurere ? bruke tiden p? selve innholdet i kurset.

I tillegg til l?rebok-kapitlene som er angitt nedenfor (kap. 1 og 2 forutsettes kjent fra f?r), er laboratoriekurset pensum.

Kompendiet for laboratoriekurset legges ut i Classfronter-rommet. Ytterligere informasjon vil bli gitt som meldinger p? emnets semestersider.

For studenter som tar KJM1110 (sist gitt V2017) om igjen: De avsnitt i KJM1111-pensum som er markert med r?dt, er ikke KJM1110-pensum.

 

Kap. 1 (Structure and Bonding) og 2 (Polar Covalent Bonds; Acids and Bases) forutsettes kjent fra f?r, og b?r repeteres av studentene selv ved semesterstart. Oppgavel?sing (bruk e-l?ringsressursene!) anbefales p? det varmeste.

 

Kap. 3 Organic Compounds: Alkanes and Their Stereochemistry

  • 3.1. Functional groups
  • 3.2. Alkanes and alkane isomers
  • 3.3. Alkyl groups
  • 3.4. Naming alkanes
  • 3.5. Properties of alkanes
  • 3.6. Conformations of ethane
  • 3.7. Conformations of other alkanes

 

Kap. 4 Organic Compounds: Cycloalkanes and Their Stereochemistry

  • 4.1. Naming cycloalkanes
  • 4.2. Cis-trans isomerism in cycloalkanes
  • 4.3. Stability of cycloalkanes: Ring strain
  • 4.4. Conformations of cycloalkanes
  • 4.5. Conformations of cyclohexane
  • 4.6. Axial and equatorial bonds in cyclohexane
  • 4.7. Conformations of monosubstituted cyclohexanes
  • 4.8. Conformations of disubstituted cyclohexanes
  • 4.9. Conformations of polycyclic molecules

 

Kap. 5 Stereochemistry at Tetrahedral Centers

  • 5.1. Enantiomers and the tetrahedral carbon
  • 5.2. The reason for handedness in molecules: Chirality
  • 5.3. Optical activity
  • 5.4. Pasteur's discovery of enantiomers
  • 5.5. Sequence rules for specifying configuration
  • 5.6. Diastereomers
  • 5.7. Meso compounds
  • 5.8. Racemic mixtures and the resolution of enantiomers
  • 5.9. A review of isomerism
  • 5.10. Chirality at nitrogen, phosphorus and sulfur
  • 5.11. Prochirality

 

Kap. 6 An Overview of Organic Reactions

  • 6.1. Kinds of organic reactions
  • 6.2. How organic reactions occur: Mechanisms
  • 6.3. Radical reactions
  • 6.4. Polar reactions
  • 6.5. An example of a polar reaction: Addition of HBr to ethylene
  • 6.6. Using curved arrows in polar reaction mechanisms
  • 6.7. Describing a reaction: Equilibria, rates, and energy changes
  • 6.8. Describing a reaction: Bond dissociation energies
  • 6.9. Describing a reaction: Energy diagrams and transition states
  • 6.10. Describing a reaction: Intermediates

 

Kap. 7 Alkenes: Structure and Reactivity

  • 7.1. Industrial preparation and use of alkenes
  • 7.2. Calculating degree of unsaturation
  • 7.3. Naming alkenes
  • 7.4. Cis-trans isomerism in alkenes
  • 7.5. Alkene stereochemistry and the E,Z designation
  • 7.6. Stability of alkenes
  • 7.7. Electrophilic addition reactions of alkenes
  • 7.8. Orientation of electrophilic addition: Markovnikov’s Rule
  • 7.9. Carbocation structure and stability
  • 7.10. The Hammond Postulate
  • 7.11. Evidence for the mechanism of electrophilic additions: Carbocation rearrangements

 

Kap. 8 Alkenes: Reactions and Synthesis

  • 8.1. Preparation of alkenes: A preview of elimination reactions
  • 8.2. Halogenation of alkenes: Addition of X2
  • 8.3. Halohydrins from alkenes: Addition of HOX
  • 8.5. Hydration of alkenes: Addition of H2O by hydroboration
  • 8.6. Reduction of alkenes: Hydrogenation
  • 8.7. Oxidation of alkenes: Epoxidation and hydroxylation
  • 8.8. Oxidation of alkenes: Cleavage to carbonyl compounds
  • 8.12. Reaction stereochemistry: Addition of H2O to an achiral alkene
  • 8.13. Reaction stereochemistry: Addition of H2O to a chiral alkene

 

Kap. 9 Alkynes: An Introduction to Organic Synthesis

  • 9.1. Naming alkynes
  • 9.2. Preparation of alkynes: Elimination reactions of dihalides
  • 9.3. Reactions of alkynes: Addition of HX and X2
  • 9.4. Hydration of alkynes
  • 9.5. Reduction of alkynes
  • 9.6. Oxidative cleavage of alkynes
  • 9.7. Alkyne acidity: Formation of acetylide anions
  • 9.8. Alkylation of acetylide anions
  • 9.9. An introduction to organic synthesis

 

Kap. 10 Organohalides

  • 10.1. Names and structures of alkyl halides
  • 10.2. Preparing alkyl halides from alkanes: Radical halogenation
  • 10.3. Preparing alkyl halides from alkenes: Allylic bromination
  • 10.4. Stability of the allyl radical: Resonance revisited
  • 10.5. Preparing alkyl halides from alcohols
  • 10.6. Reactions of alkyl halides: Grignard reagents
  • 10.8. Oxidation and reduction in organic chemistry

 

Kap. 11 Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

  • 11.1. The discovery of nucleophilic substitution reactions
  • 11.2. The SN2 reaction
  • 11.3. Characteristics of the SN2 reaction
  • 11.4. The SN1 reaction
  • 11.5. Characteristics of the SN1 reaction
  • 11.7. Elimination reactions: Zaitzev's rule
  • 11.8. The E2 reaction and the deuterium isotope effect
  • 11.9. The E2 reaction and cyclohexane conformation
  • 11.10. The E1 and E1cB reactions
  • 11.12. A summary of reactivity: SN1, SN2, E1, E1cB, and E2

 

Kap. 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy

  • 12.5. Spectroscopy and the electromagnetic spectrum
  • 12.6. Infrared spectroscopy
  • 12.7. Interpreting infrared spectra

 

Kap. 13 Structure Determination: Nuclear Magnetic Resonance Spectroscopy

  • 13.1. Nuclear magnetic resonance spectroscopy
  • 13.2. The nature of NMR absorptions
  • 13.3. The chemical shift
  • 13.4. Chemical shifts in 1H NMR spectroscopy
  • 13.5. Integration of 1H NMR absorptions: Proton counting
  • 13.6. Spin-spin splitting in 1H NMR spectra
  • 13.9. Uses of 1H NMR spectroscopy

 

Kap. 15 Benzene and Aromaticity

  • 15.1. Naming aromatic compounds
  • 15.2. Structure and stability of benzene
  • 15.3. Aromaticity and the Hückel 4n+2 rule
  • 15.4. Aromatic ions
  • 15.5. Aromatic heterocycles: Pyridine and pyrrole
  • 15.6. Polycyclic aromatic compounds

 

Kap. 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

  • 16.1. Electrophilic aromatic substitution reactions: Bromination
  • 16.2. Other aromatic substitutions
  • 16.3. Alkylation and acylation of aromatic rings: The Friedel-Crafts reaction
  • 16.4. Substituent effects in electrophilic substitutions
  • 16.5. Trisubstituted benzenes: Additivity of effects
  • 16.8. Oxidation of aromatic compounds
  • 16.9. Reduction of aromatic compounds
  • 16.10. Synthesis of polysubstituted benzenes

 

Kap. 17 Alcohols and Phenols

  • 17.1. Naming alcohols and phenols
  • 17.2. Properties of alcohols and phenols
  • 17.3. Preparation of alcohols: A review
  • 17.4. Alcohols from carbonyl compounds: Reduction
  • 17.5. Alcohols from carbonyl compounds: Grignard reaction
  • 17.6. Reactions of alcohols
  • 17.7. Oxidation of alcohols

 

A Preview of Carbonyl Compounds, s.595-603

 

Kap. 19 Aldehydes and Ketones: Nucleophilic Addition Reactions

  • 19.1. Naming aldehydes and ketones
  • 19.2. Preparation of aldehydes and ketones
  • 19.3. Oxidation of aldehydes and ketones
  • 19.4. Nucleophilic addition reactions of aldehydes and ketones
  • 19.5. Nucleophilic addition of H2O: Hydration
  • 19.7. Nucleophilic addition of hydride and Grignard: Alcohol formation
  • 19.8. Nucleophilic addition of amines: Imine and enamine formation (avsnittet er pensum for KJM1111, men ikke for KJM1110)
  • 19.10. Nucleophilic addition of alcohols: Acetal formation
  • 19.11. Nucleophilic addition of phosphorus ylides: The Wittig reaction

 

Kap. 20 Carbocylic Acids and Nitriles

  • 20.1. Naming carboxylic acids and nitriles
  • 20.2. Structure and properties of carboxylic acids
  • 20.3. Biological acids and the Henderson-Hasselbalch equation
  • 20.4. Substituent effects on acidity
  • 20.5. Preparing carboxylic acids
  • 20.6. Reactions of carboxylic acids: An overview
  • 20.7. Chemistry of nitriles

 

Kap. 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions

  • 21.1. Naming carboxylic acid derivatives
  • 21.2. Nucleophilic acyl substitution reactions
  • 21.3. Reactions of carboxylic acids
  • 21.4. Chemistry of acid halides
  • 21.5. Chemistry of acid anhydrides
  • 21.6. Chemistry of esters
  • 21.7. Chemistry of amides
  • 21.9. Polyamides and polyesters: Step-growth polymers

 

Kap. 22 Carbonyl Alpha-Substitution Reactions (avsnittene fra dette kapitlet er pensum for KJM1111, men ikke for KJM1110)

  • 22.1. Keto-enol tautomerism
  • 22.2. Reactivity of enols: Alpha-substitution reactions
  • 23.3. Alpha halogenation of aldehydes and ketones
  • 24.5. Acidity of alpha hydrogen atoms: Enolate ion formation
  • 22.6. Reactivity of enolate ions
  • 22.7. Alkylation of enolate ions

 

Kap. 23 Carbonyl Condensation Reactions (avsnittene fra dette kapitlet er pensum for KJM1111, men ikke for KJM1110)

  • 23.1. Carbonyl condensation: The aldol reaction
  • 23.2. Carbonyl condensation versus alpha substitutions
  • 23.3. Dehydration of aldol products: Synthesis of enones
  • 23.4. Using aldol reactions in synthesis
  • 23.5. Mixed aldol reactions
  • 23.6. Intramolecular aldol reactions

 

Kap. 24 Amines and Heterocycles

  • 24.1. Naming amines
  • 24.2. Structure and properties of amines
  • 24.3. Basicity of amines
  • 24.4. Basicity of substituted arylamines
  • 24.5. Biological amines and the Henderson-Hasselbalch equation
  • 24.6. Synthesis of amines (til og med s. 800) (avsnittet er pensum for KJM1111, men ikke for KJM1110)

 

Publisert 4. jan. 2018 12:49 - Sist endret 16. jan. 2018 11:42