Pensum/l?ringskrav

John McMurry: Organic Chemistry, 2004. Thomson/Brooks/Cole. ISBN: 0-534-42005-2. Utgave 6. http://www.brookscole.com/chemistry_d/index.html

F?lgende delavsnitt inng?r i pensum:

Kap. 1 Structure and Bonding

  • 1.1. Atomic structure
  • 1.2. Atomic structure: Orbitals
  • 1.3. Atomic structure: Eletron configuration
  • 1.4. Development of chemical bonding theory
  • 1.5. The nature of chemical bonds
  • 1.6. Valence bond theory
  • 1.7. Hybridization: sp3 Orbitals and the structure of methane
  • 1.8. Hybridization: sp3 Orbitals and the structure of ethane
  • 1.9. Hybridization: sp2 Orbitals and the structure of ethylene
  • 1.10. Hybridization: sp Orbitals and the structure of acetylene
  • 1.11. Hybridization of nitrogen and oxygen
  • 1.12. Molecular orbital theory

Kap. 2 Polar Covalent Bonds, Acids and Bases

  • 2.1. Polar bovalent bonds: Eletronegativity
  • 2.2. Polar covalent bonds: Dipole moments
  • 2.3. Formal charges
  • 2.4. Resonance
  • 2.5. Rules for resonance rorms
  • 2.6. Drawing resonance forms
  • 2.7. Acids and bases: The Br?nsted-Lowry definition
  • 2.8. Acid and base strength
  • 2.9. Prediciting acid-base reactions from pKa values
  • 2.10. Organic acids and bases
  • 2.11. Acids and bases: The Lewis definition
  • 2.12. Drawing chemical structures
  • 2.13. Molecular models

Kap. 3 Organic Compounds: Alkanes and Cycloalkanes

  • 3.1. Functional groups
  • 3.2. Alkanes and alkane isomers
  • 3.3. Alkyl groups
  • 3.4. Naming alkanes
  • 3.5. Properties of alkanes
  • 3.6. Cycloalkanes
  • 3.7. Naming cycloalkanes
  • 3.8. Cis-trans isomerism in cycloalkanes

Kap. 4 Stereochemistry of Alkanes and Cycloalkanes

  • 4.1. Conformation of ethane
  • 4.2. Conformation of propane
  • 4.3. Conformation of butane
  • 4.4. Stability of cycloalkanes: The Baeyer strain theory
  • 4.5. The nature of ring strain
  • 4.6. Cyclopropane: An orbital view
  • 4.7. Conformations of cyclobutane and cyclopentane
  • 4.8. Conformations of cyclohexane
  • 4.9. Axial and equatorial bonds in cyclohexane
  • 4.10. Conformational mobility of cyclohexane
  • 4.11. Conformations of monosubstituted cyclohexanes
  • 4.12. Conformational analysis of disubstituted cyclohexanes
  • 4.13. Boat cyclohexane
  • 4.14. Conformations of polycyclic molecules

Kap. 5 An Overview of Organic Reactions

  • 5.1. Kinds of organic reactions
  • 5.2. How organic reactions occur: Mechanisms
  • 5.3. Radical reactions and how they occur
  • 5.4. Polar reactions and how they occur
  • 5.5. An example of a polar reaction addition of HBr to ethylene
  • 5.6. Using curved arrows in polar reaction mechanisms
  • 5.7. Describing a reaction: Equilibria, rates, and energy
  • 5.8. Describing a reaction: Bond dissociation energies
  • 5.9. Describing a reaction: Energy diagrams and transition states
  • 5.10. Describing a reaction: Intermediates

Kap. 6 Alkenes: Structure and Reactivity

  • 6.3. Naming alkenes
  • 6.4. Electronic structure of alkenes
  • 6.5. Cis-trans isomerism in alkenes
  • 6.6. Sequence rules: The E,Z designation
  • 6.7. Alkene stability
  • 6.8. Electrophilic addition of HX to alkenes
  • 6.9. Orientation of electrophilic addition: Markovnikov’s Rule
  • 6.10. Carbocation structure and stability

Kap. 7 Alkenes: Reactions and Synthesis

  • 7.1. Preparation of alkenes: A preview of elimination reactions
  • 7.2. Addition of halogens to alkenes
  • 7.5. Addition of water to alkenes: Hydroboration
  • 7.7. Reduction of alkenes: Hydrogenation
  • 7.8. Oxidation of alkenes: Hydroxylation and cleavage

Kap. 8 Alkynes: An Introduction to Organic Synthesis

  • 8.1. Electronic structure of alkynes
  • 8.2. Naming alkynes
  • 8.3. Preparation of alkynes: Elimination reactions of dihalides
  • 8.4. Reactions of alkynes: Addition of HX and X2
  • 8.6. Reduction of alkynes
  • 8.8. Alkyne acidity: Formation of acetylide anions
  • 8.9. Alkylation of acetylide anions
  • 8.10. An introduction to organic synthesis

Kap. 9 Stereochemistry

  • 9.1. Enantiomers and the tetrahedral carbon
  • 9.2. The reason for handedness in molecules: Chirality
  • 9.3. Optical activity
  • 9.4. Pasteur's discovery of enantiomers
  • 9.5. Sequence rules for specification of configuration
  • 9.6. Diastereomers
  • 9.7. Meso compounds
  • 9.8. Molecules with more than two chirality centers
  • 9.9. Physical properties of stereoisomers
  • 9.10. Racemic mixtures and their resolution
  • 9.11. A brief review of isomerism
  • 9.12. Stereochemistry of reactions: Addition of HBr to alkenes
  • 9.13. Stereochemistry of reactions: Addition of Br2 to alkenes
  • 9.14. Stereochemistry of reactions: Addition of HBr to chiral alkenes
  • 9.15. Chirality at atoms other than carbons
  • 9.16. Chirality in nature
  • 9.17. Prochirality

Kap. 10 Alkyl Halides

  • 10.1. Naming alkyl halides
  • 10.2. Structure of alkyl halides
  • 10.3. Preparation of alkyl halides
  • 10.4. Radical halogenation of alkanes
  • 10.5. Allylic bromination of alkenes
  • 10.6. Stability of the allyl radical: Resonance revisited
  • 10.7. Preparing alkyl halides from alcohols
  • 10.8. Reactions of alkyl halides: Grignard reagents
  • 10.10. Oxidation and reduction in organic chemistry

Kap. 11 Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations

  • 11.1. The discovery of the Walden inversion
  • 11.2. Stereochemistry of nucleophilic substitution
  • 11.3. Kinetics of nucleophilic substitution
  • 11.4. The SN2 reaction
  • 11.5. Characterisation of the SN2 reaction
  • 11.6. The SN1 reaction
  • 11.7. Kinetics of the SN1 reaction
  • 11.8. Stereochemistry of the SN1 reaction
  • 11.9. Characteristics of the SN1 reaction
  • 11.10. Elimination reactions of alkyl halides: Zaitsev’s rule
  • 11.11. The E2 reaction
  • 11.12. Elimination reactions and cyclohexane conformation
  • 11.14. The E1 reaction
  • 11.15. Summary of reactivity SN1, SN2, E1, E2
  • 11.16. Substitution reactions in synthesis

Kap. 12 Struture Determination: Mass Spectrometry and Infrared Spectroscopy

  • 12.1. Mass spectrometry
  • 12.2. Interpreting mass spectra
  • 12.3. Interpreting mass spectral fragmentation patterns
  • 12.4. Mass spectral behavior of some common functional groups
  • 12.5. Spectroscopy and the electromagnetic spectrum
  • 12.6. Infrared spectroscopy of organic molecules
  • 12.7. Interpreting infrared spectra
  • 12.8. Infrared spectra of hydrocarbons
  • 12.9. Infrared spectra of some common functional groups

Kap. 13 Structure Determination: Nuclear Magnetic Resonace Spectroscopy

  • 13.1. Nuclear magnetic resonance spectroscopy
  • 13.2. The nature of NMR absorption
  • 13.3. Chemical shifts
  • 13.4. 13C NMR spectroscopy: Signal averaging and FT-NMR
  • 13.5. Charactheristics of 13C NMR spectroscopy
  • 13.8. 1H NMR spectroscopy and proton equivalence
  • 13.9. Chemical shifts in 1H NMR spectroscopy
  • 13.10. Integration of 1H NMR absorbtions: Proton counting
  • 13.11. Spin-spin splitting in 1H NMR spectra

Kap. 14 Conjugated Dienes and Ultraviolet Spectroscopy

  • 14.1. Preparation of conjugated dienes
  • 14.3. Electrophilic additions to conjugated dienes; allylic carbocations
  • 14.4. Kinetic versus thermodynamic control of reactions
  • 14.5. The Diels Alder cycloaddition reaction
  • 14.6. Characteristics of the Diels Alder reaction

Kap. 17 Alcohols and Phenols

  • 17.1. Naming alcohols and phenols
  • 17.2. Properties of alcohols and phenols: Hydrogen bonding
  • 17.3. Properties of alcohols and phenols: Acidity and basicity
  • 17.4. Preparation of alcohols: A review
  • 17.5. Alcohols from reduction of carbonyl compounds
  • 17.6. Alcohols from reaction of carbonyl compounds with Grignard reagents.
  • 17.7. Some reactions of alcohols
  • 17.8. Oxidation of alcohols
  • 17.12. Spectroscopy of alcohols and phenols

Kap. 24 Amines

  • 24.1. Naming amines
  • 24.2. Structure and bonding in amines
  • 24.3. Properties and sources of amines
  • 24.4. Basicity of amines
  • 24.5. Basicity of substituted arylamines
  • 24.6. Synthesis of amines; men bare avsnittet “Reduction of nitriles, amides, and nitro compounds”

Publisert 29. nov. 2005 15:08 - Sist endret 5. jan. 2006 09:29