Her finner du korte rapporter fra forelesningene. Hovedhensikten er at de som ikke har v?rt til stede p? en forelesning, skal kunne se hva som er gjennomg?tt og hvordan vektleggingen har v?rt. Kanskje rapportene ogs? vil v?re til nytte under repetisjonen.
Tirsdag 19. januar
Jeg begynte med ? si litt om kurset. Det meste st?r p? nettsiden
Etter denne innledningen repeterte jeg raskt litt om partiellderivasjon (gradienter, Jacobi-matriser). Jeg viste setning 2.6.4, som gir en betingelse for n?r en vektorevaluert funksjon av n variable er deriverbar.
Deretter skrev jeg opp kjerneregelen p? matriseform i det generelle tilfellet.
Jeg spesialiserte s? til at sluttresultatet er en skalar, og skrev opp kjerneregelen p? komponentform. Til slutt regnet jeg eksempel 1.
(NHR)
Onsdag 20. januar
Jeg gjentok kjerneregelen p? matrise og komponentform, for deretter ? gi et bevis. Regnet et eksempel. Definerte line?ravbildninger og viste at disse alltid var gitt ved matriser. Regnet et eksempel med rotasjonsmatriser. Definerte egenvektorer/verdier og regnet et eksempel. Avsluttet med ? definere affinavbildninger.
P? fredag snakker jeg om Matlab og om linearisering av funksjoner. (NHR)
Fredag 22. januar
Jeg gjennomgikk arealforandringen under en affinavbildning, setning 2.9.3. Deretter definisjonen av lineariseringen; 2.9.5.
I andre time demonstrerte jeg Matlab (se diary filen). Jeg snakket om stoff fra seksjon 1-5 i matlab heftet.
Tirsdag 26. januar
Jeg gjennomgikk lineariseringen, og regnet et konkret eksempel. Deretter motiverte (ikke fullt bevis) jeg formelen for buelengde av en kurve, og regnet et eksempel. S? definerte jeg hastighet og fart(buehastighet), akselerasjon og bueakselerasjon, og gjennomgikk forholdet mellom disse.
Onsdag 27. januar
Jeg gjennomgikk kjerneregelen i flere former og beviste middelverdisetningen (setning 3.2.3). Deretter definerte jeg integralet av en skalarfunksjon over en kurve i R^n. Jeg viste setning 3.3.5 (definisjonen er uavhengig av parametriseringen).
Tirsdag 2. februar
Jeg regnet et eksempel p? et integral av en skalar langs en kurve. Deretter motiverte jeg integraler av vektorfelter langs kurver, og regnet et eksempel.
Etter pausen gjennomgikk jeg funksjoner (og skript) i Matlab. Filene jeg skrev ligger her: de (modifiserte) fibonacci tallene; fib.m, l?sning av andregradsligning; andregrad.m
Det siste eksempelet viser den klassiske veien til kaos; periodedobling. Her itererer vi funksjonen f(x)=theta x (1-x), for forskjellige verdier av theta i [2,4] . Mine matlabfiler finner du her: fiter.m, simpleiter.m, og skriptet som kaller disse funksjonene; simplescript.m.
For de av dere som syntes dette var interessant, ta en titt p? Wikipediasiden om den logistiske avbildningen; The logistic map.
For ?vrig kan jeg varmt anbefale "Chaos, the making of a new science" av James Gleick, se hjemmesiden hans for mer info.
Onsdag 3. februar
Jeg gjennomgikk et eksempel p? integraler av vektorfelter. Jeg definerte konservative vektorfelt, og viste setning 3.5.3. Vi s? p? et eksempel der de partiellderiverte blir like, men funksjonen er ikke kontinuerlig, s? feltet blir ikke konservativt (rotasjon om origo). Jeg snakket om potensialet et radielltsymmetrisk vektorfelt, (gravitasjon og elektrostatisk) og om potensiell og kinetisk energi (fra Newton's 2. lov). Jeg viste setning 3.4.4. (ved ? omformulere integralet til et skalarintegral).
S? snakket jeg litt om kjeglesnitt, og definerte parabelen.
Tirsdag 9. februar
Forelesningen ble i dag avlyst p? grunn av sykdom.
Onsdag 10. februar
Vi gikk gjennom resten av Seksjon 3.6. Vi definerte ellipser og hyperbler, og gikk gjennom eksempler p? alle typene kjeglesnitt der vi regner ut halvakser, brennvidde, sentrum, og brennpunkter. Vi besviste ogs? refleksjonsegenskapen for parabler, og forklarte at de andre kjeglesnittene har tilsvarende egenskaper. Vi avsluttet med ? forklare at hyperbler har asymptoter.
Tirsdag 16. februar
Jeg snakket litt om ? tegne grafen til funksjoner av 2 variable, deretter litt om konturkurver. S? gikk jeg gjennom polar- og kulekoordinater. Gikk gjennom ligningen for tangenten til en flate der f:R^n->R er konstant, s? s? jeg p? sammenhengen mellom tangentplan og linearisering.
Til slutt regnet jeg litt p? parametriseringen av kuleflate og torus. Matlab eksempler kommer i morgen. Da begynner ogs? kapittel 6.
Onsdag 17. februar
Jeg viste forskjellige m?ter ? visualisere funksjoner av flere variable i Matlab; surf(...), mesh(...), contour(...), contourf(...), quiver(...). Deretter viste jeg to eksempler p? hvordan man kan plotte parametriserte flater i Matlab (kule, torus, og "posthorn"). Diary filen finner du her .
Etter pausen startet jeg p? multippel integrasjon, snakket om defininsjonen, viste noen eksempler p? hvordan man regner ut slike integraler ved f?rst ? integrere mhp. den ene variablen, s? mhp. den andre.
Tirsdag 23. februar
Jeg gjennomgikk noen eksempler p? integrasjon av funksjoner av to variable (fant volum under en flate), og fant massemiddelpunkt. Deretter formel for integraler i polarkoordinater "dxdy = rdrdtheta". S? motiverte jeg formelen for arealet til en parametrisert flate.
Onsdag 24. februar
Jeg gjennomgikk noen eksempler for areal av krumme flater; regnet areal av kula p? to m?ter. Deretter definerte jeg skalarintegralet over parametriserte flater og regnet et eksempel.
Etter pause viste jeg Greens formel for rektangler, og omr?der sammensatt av rektangler. Jeg motiverte at formelen ogs? gjelder for omr?der sammensatt av type I og type II omr?der. Jeg regnet et eksempel, men flere kommer...
Tirsdag 2. mars
Jeg regnet et (viktig) eksempel p? bruk av Greens teorem. Deretter forklarte jeg variableskifte i en dimensjon. Etter pause forklarte jeg variabelskifte i to dimensjoner, og motiverte formelen vha. regning med Riemannsummer. S? regnet jeg ett eksempel.
Onsdag 3. mars
Siden jeg glemte ? referere, s? har jeg nesten glemt hva jeg sa. Beklager!
S?vidt jeg husker, regnet jeg p? uegentlige integraler i 2D, og introduserte trippelintegraler. Regnet noen eksempler (type I, II osv.). Viste hvordan man kan finne volumer ved ? integrere funksjonen f(x,y,z)=1 over mengden (legemet) i 3D.
Tirsdag 9. mars
F?r pause forklarte jeg formelen for variabelskifte i 3D, og fant Jacobideterminanten for skifte til kulekordinater (dxdydz=rho sin(phi) drho dphi dtheta). Regnet nok en gang ut volumet til en kule, og regnet til slutt u gjennomsnittlig avstand fra et punkt utenfor en kule til kula.
Etter pause begynte jeg p? Kapitel 4 i FVLA. Demonsterte hvor vanskelig det var ? l?se line?re systemer av line?re ligninger vha. den s.k. utvidedet matrisen til systemet.
Onsdag 10. mars
Jeg forklarte hva matriser p? trappeform er, og hvordan man kan transformere en matrise til trappeform med radoperasjoner. Viste s? (med litt hjelp) setining 4.2.4 og 4.2.5 i FVLA. Deretter forklarte jeg redusert trappeform, og l?sninger av ligniner med samme venstreside og forskjellig h?yreside.
Brukte dette til ? finne en algoriteme for ? bestemme inversen til en nxn matrise (som ogs? kan brukes til ? finne om matrisen er invertibel). P? tirsdag fortsetter jeg med seksjon 4.6.
Tirsdag 16. mars
Jeg gjennomgikk line?r uavhengighet, og spennet til en mengde vektorer i R^m. Deretter introduserte jeg begrepet en basis. Jeg viste at en line?ravbildning er entydig definert ved hvordan den virker p? en basis. Deretter begynt jeg p? seksjon 4.8 og viste hvordan radoperasjonene kan utrykkes ved element?re matriser.
Til slutt introduserte jeg determinanten, og begynte p? en rekke lemmar som til slutt skal vise mange nyttige egenskaper ved denne.
Onsdag 17. mars
Jeg fortsatte ? vise hva radoperasjoner gj?r med determinanten, og kom fram til setning 4.9.9. Deretter viste jeg hvordan den kan brukes til ? regne ut determinanter.
Tirsdag 6. april
Jeg repeterte litt om radoperasjoner, og viste setning 4.9.10.S? viste jeg produktregelen for determinanter, samt det(A)=det(A^T). Deretter gikk jeg gjennom noen eksempler hvor vi regnet ut determinanten ut ifra forskjellige rader eller kolonner. S? begynte jeg p? seksjon 4.10 hvor jeg rakk ? definere egenvektorer og egenverdier samt ? regne et eksempel.
Onsdag 7. april
Jeg fortsatte med egenvektorer/egenverdier og regnet noen eksempler p? multiple egenverdier. Jeg beviste setning 4.10.3. Viste setning 4.10.8 (diagonalisering) og at determinanten er produktet av egenverdiene. Etter pausen regnet jeg et lengre eksempel som lignet litt p? oblig2.
Tirsdag 11. april
Jeg avsluttet kapittel 4 med ? si litt om komplekse egenverdier/egenvektorer og regne et eksempel. Startet deretter kapittel 5. Snakket om konvergens av f?lger og viste teorem 5.2.3 (Bolzano-Weierstrass).
Onsdag 12. april
Jeg viste at Cauchyf?lger i R^m konvergerer (kompletthet av R^m). Deretter snakket jeg litt om iterasjon av funksjoner. Eksempler p? dette var Newton's metode og en modell for dyrebefolkninger. Jeg viste hvordan funksjoner F:R^2->R^2 kunne betraktes som funksjoner fra C til C, og introduserte Juliamengen. Jeg viste hvordan man kan gj?re dette i Matlab. Filene som ble brukt var iteration.m, f1.m, dyrepop.m, julia.m, juliaset.m og juliaplot.m. Diary filen finner du her.
Tirsdag 20. april
Jeg gjennomgikk og beviste Banachs fikspunktsteorem (teorem 5.5.4), og snakket litt om betingelsene for at en avbildning er en kontraksjon (omtrent at |F'|<1 p? en konveks mengde). Deretter snakket jeg litt om konvergens av Newtons metode, og nevnte Kantorevitsj resultat, som sier at dersom det initielle punktet er i n?rheten av et nullpunkt, s? konvergerer metoden eksponensiellt fort.
Deretter formulerte jeg omvendt funksjonsteorem (teorem 5.7.2).
Onsdag 21. april
Jeg viste bruk av omvendt funksjonsteorem. Deretter beviste jeg implisitt funksjonsteorem, og regnet etpar eksempler.
Etter pausen viste jeg at en kontinuerlig funksjon p? en begrenset, lukket mengde antar max og min, og jeg beviste (for de som hadde glemt det) Taylors formel med restledd for funksjoner av 1 variabel. S? skrev jeg opp Taylors formel for skalarfunksjoner av flere variable og forklarte leddene. Bevis og konsekvenser kommer neste uke.
Tirsdag 27. april
Vi startet med ? bevise Taylors formel i flere variable i Seksjon 5.9, og formulerte og viste en annen versjon av denne, som var nyttig for senere bruk. Vi viste en ulikhet som kan brukes for symmetriske matriser med enten bare positive eller negative egenverdier (Lemma 5.9.5),og brukte denne til ? bevise annenderiverttesten, som vi formulerte b?de i m variable, og med en enklere versjon i to variable. Vi regnet ogs? to eksempler, en for to dimensjoner, og en for tre dimensjoner (Oppgave 5.9.7). Neste gang tas et uoppstilt problem fra 5.9 f?r vi begynner p? 5.10
Onsdag 28. april
Jeg regnet f?rst et eksempel (minimere overflate for en eske med gitt volum), f?r jeg begynte p? Lagranges multiplikatormetode. Jeg beviste teorem 5.10.1 og regnet flere eksempler.
TIrsdag 4. mai
Jeg snakket om Lagranges multiplikatormetode, ogs? for flere bibetingelser. Deretter presenterte jeg gradientmetoden for ? finne max/min (uten regning).
Etter pause begynte jeg p? kapittel 12 i "Kalkulus". Jeg snakket litt om rekker, og viste integraltesten for rekker med positive ledd.
Onsdag 5. mai
Jeg gjennomgikk sammenligningstesten (i to varianter), forholdstesten og rottesten.
Regnet flere eksempler. Tilslutt snakket jeg om alternerende rekker og viste setning 12.3.1. Deretter snakket jeg om betinget og absolutt konvergens. Neste tirsdag begynner jeg p? potensrekker.
Onsdag 12. mai
Jeg gjennomgikk Seksjon 12.8. Vi viste at for en funksjon som kan skrives som en potensrekke, s? vil denne v?re lik Taylorrekken til funksjonen. Vi regnet gjennom alle eksemplene i 12.8 p? hvordan vi finner Taylorrekken til en funksjon, samt hvordan vi fra en gitt potensrekke kan finne et uttrykk for funksjonen ved hjelp av leddvis derivasjon og integrasjon av rekken, samt summeformelen for en geometrisk rekke. Detet var siste forelesning med nytt pensum. P? tirsdag vil jeg g? gjennom f?rste del av eksamenen som ble gitt v?r 2008.
Tirsdag 18. mai
Jeg regnet de fire f?rste oppgavene som ble gitt til eksamen V2008. Temaene her var omvendt funksjonsteorem, Lagranges multiplikatormetode, egenverdier, egenvektorer, og rekker. I morgen kommer de tre siste oppgavene i dette eksamenssettet til ? bli gjennomg?tt, f?r vi begynner p? settet som ble gitt v?r 2009.
Onsdag 19. mai
Jeg regnet vider i eksamensoppgavene. Kom til 2009, oppgave 4. Resten av settet regnes p? onsdag 26.5.
Onsdag 26. mai
Jeg regnet resten av eksamen fra 2009. N? er det slutt, lykke til p? ?rets eksamen!