Messages
Regarding the grades:
The grades are decided by following central guidelines that apply for mathematics courses. Each grade also reflects the individual exam solution.
Problem 1, parts a and b. Maximum score requires complete and correct computation of the probabilities of observing the qubits
using inner product with the vectors from the basis.
Problem 2.a: Maximum score requires complete and correct set up of all four probabilities of seeing each qubit in its possible state, writing the resulting state of the system in each state after measurement, and proving that this is a product state, either
by writing it directly in tensor product form, or by using the criterion with products of amplitudes. Part 2b, maximum score requires justification, either explicitly applying the Partial Measurement Rule, or using the definition of
entanglement for pure states by comparing a product of amplitudes.
Pr...
Here is a revised suggested solution to the exam problems.
Here is an updated curriculum (pensumliste) as well as some information about the final, written exam.
1) A list of topics relevant for the exam (pensumliste) will be made available from this page shortly.
2) There will be a question session on Tuesday 13 June at 14:00-15:00 in room 1120 in NHA building.
Tillitsvalgt i dette emnet er Georgy Fomin, epost georgy"at"math.uio.no. Den tillitsvalgte kan formidle sp?rsm?l og forslag til undervisningen p? vegne av kursets p?meldte.
The student representative is Georgy Fomin, email address georgy"at"math.uio.no. The student representative can forward questions and suggestions about the teaching from the students enrolled in the course.
I hvert emne skal det v?re et tillitsvalgt blandt studentene som er p?meldt. Hvis du kunne tenke deg ? bidra her, send gjerne en epost til foreleser.
Every course must have a student representative among those who are enrolled. If you are willing to be the representative, please send an email to the lecturer.
The teaching in this course is moved to room 1120 in Niels Henrik Abel (NHA) house on Wednesdays and to room 1020 in NHA on Mondays. This starts Wed 8 March.
There are many sources describing the structure of SU(2), and some sources mention the connection with the Pauli matrices. One such is the book "Essential mathematics for undergraduates. A guided approach to Algebra, Geometry, Topology and Analysis" by Simon G. Chiossi, available as ePUB from Springer. See sections 16.1 (especially example 16.6), 17.1 and 17.2 (especially Example (iv) right after Theorem 17.6). For proofs about the identification of SU(2)/{I, -I} as SO(3) one needs more advanced algebra books, for example M. Artin's "Algebra", 2nd edition, Prentice Hall 2011 (see section 9.3).
These are available here. (Because for the time being uploading files to lecture plan gives an error message in vortex.)
Det er satt en ny dato for innlevering av den obligatoriske oppgaven, og det er torsdag 23. mars 2023. Oppgaveteksten vil bli lagt ut i starten av mars.
Note that there is a new deadline for uploading the mandatory assignment. The new date is Thursday 23 March 2023. The assignment will be posted at the beginning of March.
En sammendrag av forelesning 2 er tilgjengelig fra "Tidsplan for forelesninger". Slike sammendrag vil bli lagt ut ved jevne mellomrom.
A summary of lecture 2 is available under "Schedule". Such summaries will be posted regularly.
Kurset har til form?l ? introdusere grunnlaget i kvanteberegning samt gjennomg? de spesifikke algoritmene som gj?r seg gjeldende. Det er ikke antatt kjenskap til fysikk (kvantemekanikk) eller informatikk (algoritmer og kompleksitet). Vi kommer til ? f?lge forelesningsnotatene til S. Aaronson, heretter referert som [Aar], som er tilgjengelige fra Leganto eller her. Notatene [Aar] omtaler viktige ideer fra kvantemekanikken som underbygger kvanteberegning; merk at denne del av presentasjonen i [Aar] har ikke en tung teknisk stil, og vi vil ikke gj?re begrepene mer presisse enn det som st?r der. Vi kommer dog til ? bruke mere matematisk presissjon n?r det gjelder den del av innholdet som bygger p? line?r algebra, siden det kan tilf?ye klarhet. H?ndskrevne notater til forelesningene vil v?re tilgjengelige som pdf-filer fra "Forelesningsplan".
En kortfattet artikkel som tar for seg en ra...
Welcome to the first lecture, Monday 23 January!
Velkommen til f?rste forelesning, mandag 23. januar!