Syllabus fall 2014

Syllabus

  • Bayesian modeling and simple models
    • Chapter 2-3 and 5 in lecture notes
    • Chapter 1 and 2.1-2.2 in book
  • Monte Carlo integration
    • Chapter 4 in lecture notes
    • Chapter 3.1 and 3.3 in book 
  • Model selection
    • Chapter 6 in lecture notes
    • Chapter 2.3.3 in book
  • Markov Chain Monte Carlo algorithms
    • Chapter 7 in lecture notes 
    • Chapter 3.4.1-3.4.2 in book
  • Diagnosing convergence
    • Chapter 8 in lecture notes
    • Chapter 3.4.5-3.4.6 in book
  • Asymptotic methods
    • Chapter 9 in lecture notes 
    • Chapter 3.2 in book
  • The multivariate normal model
    • Chapter 10 in lecture notes
  • Linear regression, group comparisons and hierarchical modeling
    • Chapter 11-12 in lecture notes
    • Chapter 2.4.1 and 4.1 in book
  • Decision theory
    • Chapter 13 in lecture notes
    • Appendix B.1-B.3 in book
  • Empirical Bayes
    • Chapter 14 in lecture notes
    • Chapter 5.1-5.2 in book?
  • All problems from Problem Sets 1-11

 

Main textbook

Carlin and Louis (2009): Bayesian methods for data analysis (Third edition), Chapman & Hall, ISBN  978-1-58488-697-6

Additional text

Robert and Casella (2010):  Introducing Monte Carlo Methods with R, Springer ISBN: 978-1-4419-1575-7 (Print) 978-1-4419-1576-4 (Online)

Available online on  http://link.springer.com/book/10.1007/978-1-4419-1576-4/page/1

 

Software

For computer exercises, we will use the freely available statistical programming language R, see http://www.r-project.org/.

Published Aug. 14, 2014 3:13 PM - Last modified Mar. 16, 2023 2:02 PM