#The commands below assume that the
melanoma data set has been stored
# in the dataframe
"melanoma", that the survival library has been attached
# and that "sex" and
"ulcer" are defined as factors
# (cf. the R commands to practical exercise 3)
# In practical exercise 4 we
arrived at the model:
cox.mel<- coxph(Surv(lifetime,status==1)~ ulcer+log(thickn,2),
data=melanoma)
#In order to estimate/plot ?the survival for an individual with
given values
#of the covariates, we may use the coxph-object
"cox.mel" as an input
#to the survfit-command.
#We illustrate the approach by
plotting the estimated survival for patients
#with covariates
# (i) ulcer=2,
thickn=2
# (ii) ulcer=1, thickn=2
# (iii) ulcer=2, thick=5
# (iv) ulcer=1, thick=5
cox.mel22<-survfit(cox.mel,newdata=data.frame(ulcer=2,thickn=2),conf.type="plain")
cox.mel12<-survfit(cox.mel,newdata=data.frame(ulcer=1,thickn=2),conf.type="plain")
cox.mel25<-survfit(cox.mel,newdata=data.frame(ulcer=2,thickn=5),conf.type="plain")
cox.mel15<-survfit(cox.mel,newdata=data.frame(ulcer=1,thickn=5),conf.type="plain")
plot(cox.mel22,conf.int=F,main="Estimated survival curves")
lines(cox.mel12,lty=2)
lines(cox.mel25,lty=3)
lines(cox.mel15,lty=4)