Teaching plan

Date Teacher Place Topic Lecture notes / comments
24.08.2010 Ujjwal Koley  B71  Introduction  Some repetition (?); Integration by part in R^n and formulas which follow from it; Multidimensional chain rule; Convolution; Laplace equation 
27.08.2010 Ujjwal Koley  B70  Laplace equation  Poisson's equation; Harmonic functions, Fundamental solution. 
31.08.2010 Ujjwal Koley  B71  Mean Value theorem  Mean-value formulas; Maximum principle  
03.09.2010 Ujjwal Koley  B70  Regularity  Regularity theorem, Liouville's theorem, Harnack's inequality, Introduction to Green's function 
07.09.2010 Nils Henrik Risebro  B71  Green's functions  Symmetry of the Green's function. Green's function for a half plane and a sphere. 
10.09.2010 NIls Henrik Risebro  B70  Green's functions, energy methods  The students show that the formula for the sphere is correct. I give some energy arguments. 
14.09.2010 Achenef Tesfahun  B71  H?lder spaces. Mollifiers  H?lder spaces. Mollifiers; smooth approximation of locally integrable functions 
17.09.2010 Achenef Tesfahun  B70  Weak derivatives, Sobolev spaces  Weak derivatives and Sobolev spaces: L.C. Evans Page 242-245. Fundamental Theorem of calculus of Variation.  
21.09.2010 Achenef Tesfahun  B71  Sobolev spaces  Example, properties of weak derivatives and Sobolev spaces, Sobolev spaces as function spaces: L.C. Evans, page 246-249. 
24.09.2010 Achenef Tesfahun  B70  Exercises  We will do the exercises (2.5.2-2.5.8 ) in L. C. Evans, page 85-87. 
28.09.2010 Achenef Tesfahun  B71  Sobolev spaces, approximation  Approximating a function in Sobolev spaces by smooth functions. L. C. Evans page 250-254 
01.10.2010 Achenef Tesfahun  B70  Sobolev spaces: Extension, Traces  Extension and Trace Theorems for Sobolev spaces. L. C. Evans page 254-259 
05.10.2010 Achenef Tesfahun  B71  Sobolev spaces: Traces, Sobolev inequalities  We continue on the proof of Trace Theorem. I will also give the proof for Gagliardo-Nirenberg-Sobolev inequality. L.C.Evans page 258-264 
08.10.2010 Achenef Tesfahun  B70  Sobolev Spaces: Sobolev inequalities  Estimates in W^{1,p} and W_0^{1,p} (when p<n). We will also see Morrey's inequality (when n<p). L.C. Evans (page 265-269) 
12.10.2010 Achenef Tesfahun  B71  Sobolev Spaces: Sobolev inequalities  We finish proof of Morrey's inequalities, and see Theorem 5 (page 269 of the book). We will also do the proofs for the general Sobolev inequalities (page 270-271 of the book). 
15.10.2010 Achenef Tesfahun  B70  Exercises  We will do the exercises 3, 5, 6, 7, 8 and 13 (if we get time) in L. C. Evans, page 290-291. 
19.10.2010 Xavier Raynaud  B71  Compactness. Arzela-Ascoli and Rellich-Kondrachov theorems  section 5.7 
22.10.2010 --  B70  Rellich-Kondrachov theorem - Poincare inequality  sections 5.7, 5.8.1. NB: lecture finishes at 13:15. 
26.10.2010 --  B71  Fourier transform  Exercises 5.10.10, 5.10.14

section 4.3.1 

29.10.2010 --  B70  Fourier transform - H^s spaces  Section 5.8.4. Appendix D.

Exercise on Fourier transform of a Gaussian . Exercises 5.10.15 

02.10.2010 --  B71  Some results and definitions from linear functional analysis  Some parts of appendix D Riesz representation theorem

Elliptic equation (intro) 

05.10.2010 --  B70  Weak solutions to elliptic equations and Lax-Milgram theorem  Exercise on weak convergence . Exercise 5.10.18 
09.11.2010 --  B71  Existence of weak solutions - Regularity theory   
12.11.2010 --  B70  Regularity theory - Difference quotient  Exercise on Poincare's inequality

Oppgave 1 and 2 from (i) to (v) in exam 2008 

16.11.2010 --  B71  Interior regularity   
17.11.2010 --  B70  Boundary regularity  Exercise on higher interior regularity

Problem 1 in exam 2009

Oppgave 1 in exam 2005 

23.11.2010 --  B71  Maximum principle   
26.11.2010 --  B70  Maximum principle  Exercise on regularity

End of oppgave 2 in exam 2008 

30.11.2010 --  B71  Maximum principle - Weak solution (rep.)   
03.12.2010 --  B70    Exercise 6.6.2

Problem 2 and 3 in exam 2009

Problem 1 in exam 2006 There is an error in that problem. We will just shortly discuss it.

Problem 2 in exam 2004 

Published July 5, 2010 10:33 AM - Last modified Oct. 29, 2024 1:56 PM