MAT4305 – Partial Differential Equations and Sobolev Spaces
Course description
Schedule, syllabus and examination date
Course content
The course provides an introduction to the theoretical basis for linear partial differential equations, focusing on elliptic equations and eigenvalue problems. The techniques and methods developed are general and based on functional analysis and Sobolev spaces. They provide qualitative information about solutions even when explicit solution formulas do not exist. Sobolev spaces, and the theory of Sobolev/Poincaré inequalities and Rellich-Kondrachov compactness, form an essential part of modern research on partial differential equations. The course also provides an introduction to the theory of numerical methods, including the Galerkin method.
Learning outcome
After completing the course you
- are familiar with Sobolev spaces and their role in analysing partial differential equations
- know what is meant by weak differentiability and can define weak solutions of elliptic equations
- can use the Lax-Milgram theorem and give proofs for the existence and uniqueness of weak solutions
- are familiar with eigenvalues and eigenfunctions of elliptic equations
- know basic theory for regularity of weak solutions
- have some knowledge of numerical methods for partial differential equations.
Admission to the course
Students admitted at UiO must?apply for courses?in Studentweb. Students enrolled in other Master's Degree Programmes can, on application, be admitted to the course if this is cleared by their own study programme.
Nordic citizens and applicants residing in the Nordic countries may?apply to take this course as a single course student.
If you are not already enrolled as a student at UiO, please see our information about?admission requirements and procedures for international applicants.
Recommended previous knowledge
Overlapping courses
- 10 credits overlap with MAT9305 – Partielle differensialligninger og Sobolev-rom I.
- 10 credits overlap with MAT-INF3300 – Partial differential equations and Sobolev spaces I (discontinued).
- 10 credits overlap with MAT-INF4300 – Partial differential equations and Sobolev spaces I (continued).
Teaching
4 hours of lectures/exercises per week throughout the semester.
The course may be taught in Norwegian if the lecturer and all students at the first lecture agree to it.
Examination
Final written exam or final oral exam, which counts 100 % towards the final grade.
The form of examination will be announced by the lecturer by 1 October/1 March for the autumn semester and the spring semester respectively.
This course has 1 mandatory assignment that must be approved before you can sit the final exam.
It will also be counted as one of the three attempts to sit the exam for this course, if you sit the exam for one of the following courses: MAT9305 – Partielle differensialligninger og Sobolev-rom I
Examination support material
No examination support material is allowed.
Language of examination
Courses taught in English will only offer the exam paper in English. You may write your examination paper in Norwegian, Swedish, Danish or English.
Grading scale
Grades are awarded on a scale from A to F, where A is the best grade and F is a fail. Read more about the grading system.
Resit an examination
This course offers both postponed and resit of examination. Read more:
More about examinations at UiO
- Use of sources and citations
- Special exam arrangements due to individual needs
- Withdrawal from an exam
- Illness at exams / postponed exams
- Explanation of grades and appeals
- Resitting an exam
- Cheating/attempted cheating
You will find further guides and resources at the web page on examinations at UiO.