FYS-STK4155 – Anvendt dataanalyse og maskinl?ring
Beskrivelse av emnet
Timeplan, pensum og eksamensdato
Kort om emnet
Emnet gir en innf?ring i en rekke sentrale algoritmer og metoder, som er viktige for studier av statistisk dataanalyse og maskinl?ring. Emnet er prosjektbasert, og gjennom de ulike prosjektene introduseres studentene for grunnleggende forskningsproblemer innen disse feltene, med sikte p? ? gjengi moderne vitenskapelige resultater. Studentene l?rer ? utvikle og strukturere st?rre koder for ? studere disse systemene, bli kjent med datafasiliteter og l?rer hvordan h?ndtere store vitenskapelige prosjekter. God vitenskapelig og etisk oppf?rsel vektlegges gjennom hele emnet.
Hva l?rer du?
Etter ? ha fullf?rt?emnet, har du:
- en grunnleggende forst?else av Bayesisk statistikk og kjente sannsynsfordelinger.
- en forst?else av sentrale algoritmer som brukes i statistisk data-analyse og maskinl?ring, med hovedvekt p? leda l?ring.
- kunnskap om Monte Carlo metoder, Markov-kjeder, Gibbs samplere, data optimering og deres anvendelser.
- en forst?else av line?r og logistisk regresjon.
- en forst?else av sentral optimerings algoritmer som stochastic gradient descent.
- kunnskap om sentrale dypl?ringsmetoder for leda og uleda l?ring.?
- erfaring i ? jobbe med store numeriske prosjekter.
- kjennskap til andre maskinl?ringsalgoritmer, slik som support vector maskiner, beslutningstr?r og ensemble metoder som random forests, bagging og boosting.
Opptak til emnet
Studenter tatt opp til andre masterprogrammer kan, etter s?knad, f? adgang til emnet hvis dette er klarert med eget program.
Dersom du ikke allerede har studieplass ved UiO, kan du s?ke om opptak til v?re?studieprogrammer, eller s?ke om ??bli enkeltemnestudent.
Emnet kan tilrettelegges for studenter som ikke kan delta i ordin?r undervisning p? campus.
Anbefalte forkunnskaper
Grunnleggende kunnskap om programmering og numerikk:
Ett eller flere av f?lgende emner:
- INF1100 – Grunnkurs i programmering for naturvitenskapelige anvendelser (videref?rt)
- IN1900 – Introduksjon i programmering for naturvitenskapelige anvendelser
- MAT-IN1105 – Programmering, modellering og beregninger (nedlagt)
- IN-KJM1900 – Introduksjon i programmering for kjemikere
- BIOS1100 – Innf?ring i beregningsmodeller for biovitenskap
Overlappende emner
- 10 studiepoeng overlapp med FYS-STK3155 – Anvendt dataanalyse og maskinl?ring.
Undervisning
Undervisningen g?r over et helt semester med f?lgende tilbud:?
4 timer forelesninger per uke?
2 timer gruppearbeid med numeriske prosjekter per?uke i ca. 15 uker
Ukesoppgaver
Eksamen
- Hjemmeeksamener i form av tre prosjektoppgaver, som hver teller 1/3 av avsluttende karakter.
Ved oppgaveskriving m? du gj?re deg?kjent med?reglene for kildebruk og referanser. Ved brudd p? reglene kan du bli mistenkt for?fors?k p? fusk.
Som eksamensfors?k i dette emnet teller ogs? fors?k i f?lgende tilsvarende emner: FYS-STK3155 – Anvendt dataanalyse og maskinl?ring
Eksamensspr?k
Dersom emnet undervises p? engelsk vil det bare tilbys eksamensoppgavetekst p? engelsk. Du kan besvare eksamen p? norsk, svensk, dansk eller engelsk.
Karakterskala
Emnet bruker?karakterskala fra A til F, der A er beste karakter og F er stryk. Les mer om karakterskalaen
Adgang til ny eller utsatt eksamen
I dette emnet tilbys det ikke utsatt eksamen for eksamenskandidater som er syke f?r eksamen eller som blir syke under eksamen. Det kan tilbys utsatt innleveringsfrist.
Sykdommen m? dokumenteres med legeattest datert senest p? ordin?r innleveringsdato. Du m? levere legeattesten til emnets kontaktpunkt innen innleveringsfristen for hjemmeeksamen.
Det tilbys ikke ny eksamen til kandidater som trekker seg eller ikke best?r ordin?r eksamen.
Mer om eksamen ved UiO
- Kildebruk og referanser
- Tilrettelegging p? eksamen
- Trekk fra eksamen
- Syk p? eksamen / utsatt eksamen
- Begrunnelse og klage
- Ta eksamen p? nytt
- Fusk/fors?k p? fusk
Andre veiledninger og ressurser finner du p? fellessiden om eksamen ved UiO.