MAT-INF4110 – Mathematical Optimization
Course description
Course content
The course treats selected topics in convexity, optimization and matrix theory. Possible topics include: combinatorial optimization, combinatorial matrix theory, convex analysis, and convex optimization. Usually the version with combinatorial optimization and matrix theory, convexity and polyhedral theory, and also an introduction to polyhedral combinatorics.
Learning outcome
The goal of this course is for students to:
- have knowledge of basic convex analysis and combinatorial optimization
- understand the basic theory of polyhedra and polytopes
- know basic theory combinatorial matrix theory and network flows
- be able to develop algorithms, exact and approximate for some types of combinatorial optimization
Admission
Students who are admitted to study programmes at UiO must each semester register which courses and exams they wish to sign up for in Studentweb.
If you are not already enrolled as a student at UiO, please see our information about admission requirements and procedures.
Prerequisites
Recommended previous knowledge
MAT2400 – Real Analysis, MAT-INF1100 – Modelling and Computations (discontinued), MAT-INF3100 – Linear Optimization (continued).
Overlapping courses
- 10 credits overlap with MAT-INF9110 – Mathematical Optimization (discontinued)
- 10 credits overlap with INF-MAT5360 – Mathematical optimization (discontinued)
- 10 credits overlap with INF-MAT9360 – Mathematical Optimization (discontinued)
The information about overlaps is not complete. Contact the Department for more information if necessary.
Teaching
2 hours of lectures each week.
Examination
Final oral or written examination. The form of examination will be announced by the teaching staff by 15 October/15 March for the autumn semester and the spring semester respectively.
Examination support material
No examination support material is allowed.
Language of examination
Subjects taught in English will only offer the exam paper in English.
You may write your examination paper in Norwegian, Swedish, Danish or English.
Grading scale
Grades are awarded on a scale from A to F, where A is the best grade and F is a fail. Read more about the grading system.
Explanations and appeals
Resit an examination
Students who can document a valid reason for absence from the regular examination are offered a postponed examination at the beginning of the next semester.
Re-scheduled examinations are not offered to students who withdraw during, or did not pass the original examination.
Withdrawal from an examination
It is possible to take the exam up to 3 times. If you withdraw from the exam after the deadline or during the exam, this will be counted as an examination attempt.
Special examination arrangements
Application form, deadline and requirements for special examination arrangements.
Evaluation
The course is subject to continuous evaluation. At regular intervals we also ask students to participate in a more comprehensive evaluation.