MAT1300 – Analyse 1
Beskrivelse av emnet
Kort om emnet
Reell tall og Euklidske rom, topologi i metriske rom, kontinuerlige funksjoner, f?lger og rekker av funksjoner, uniform konvergens, deriverbare avbildninger, det inverse og implisitte funksjonsteorem, Riemann-integrasjon, Fubinis teorem og skifte av variable.
Hva l?rer du?
? gi studentene en innf?ring i grunnlaget for matematisk analyse, b?de for videre studier i matematikk og for anvendelser.
Opptak og adgangsregulering
Studenter m? hvert semester s?ke og f? plass p? undervisningen og melde seg til eksamen i Studentweb.
Dersom du ikke allerede har studieplass ved UiO, kan du s?ke opptak til v?re studieprogrammer, eller s?ke om ? bli enkeltemnestudent.
Forkunnskaper
Obligatoriske forkunnskaper
I tillegg til generell studiekompetanse eller realkompetanse m? du dekke spesielle opptakskrav.
Du m? ha:
- Matematikk R1 (eller Matematikk S1 og S2) + R2
Og en av disse:
- Fysikk (1+2)
- Kjemi (1+2)
- Biologi (1+2)
- Informasjonsteknologi (1+2)
- Geofag (1+2)
- Teknologi og forskningsl?re (1+2)
De spesielle opptakskravene kan ogs? dekkes med fag fra videreg?ende oppl?ring f?r Kunnskapsl?ftet, eller p? andre m?ter.
Anbefalte forkunnskaper
Emnet bygger p? MAT1100 – Kalkulus, MAT1110 – Kalkulus og line?r algebra og MAT1120 – Line?r algebra.
Overlappende emner
Emnet overlapper 10 studiepoeng mot MA 134.
* Vi gj?r oppmerksom p? at informasjon om overlapp mot gamle og nye emner ikke er fullstendig. Ta eventuelt kontakt med matematisk institutt.
Undervisning
Fire timer forelesninger og to timer oppgaveregning i plenum hver uke.
Eksamen
To obligatoriske oppgaver m? best?s innen gitte frister for ? kunne g? opp til avsluttende eksamen. Endelig karakter baseres p? avsluttende skriftlig eksamen.
Regelverk for obligatoriske oppgaver ved Matematisk institutt
Tillatte hjelpemidler til eksamen: Ingen.
Eksamensspr?k
Dersom emnet undervises p? engelsk vil det bare tilbys eksamensoppgavetekst p? engelsk.
Du kan besvare eksamen p? norsk, svensk, dansk eller engelsk.
Karakterskala
Emnet bruker karakterskala fra A til F, der A er beste karakter og F er stryk. Les mer om karakterskalaen.
Begrunnelse og klage
Adgang til ny eller utsatt eksamen
Dette emnet tilbyr ny eksamen i begynnelsen av p?f?lgende semester til kandidater som stryker eller trekker seg under ordin?r eksamen. Samtidig blir det ogs? arrangert utsatt eksamen for studenter som dokumenterer gyldig frav?r fra eksamen innen gitte frister.
For n?rmere opplysninger, se /studier/admin/eksamen/sykdom-utsatt/mn/index.html
Mer informasjon om eksamen ved MN-fakultetet kan du lese p? fakultetets eksamenssider .
Annet
Evaluering av emnet
Tilbakemelding fra studentene v?re er avgj?rende for at vi skal kunne tilby best mulig emner og studieprogrammer. Som student ved UiO vil du derfor involveres i ulike typer evaluering av studiehverdagen din. Vi gjennomf?rer b?de fortl?pende evaluering av emner og programmer, og med jevne mellomrom ber vi studentene delta i en mer omfattende og detaljert evaluering av et bestemt emne eller program. Dette emnet evalueres v?ren 2006. Studentevalueringer er en del av kvalitetssikringen av utdanningsvirksomheten ved UiO /studier/om/kvalitet/